
Page 1 of 36

HELLO WORLD.. 3

AN INTRODUCTION TO COMPUTER PROGRAMMING... 3
WHY "HELLO WORLD?" .. 3
JAVASCRIPT: YOUR FIRST PROGRAMMING LANGUAGE.. 3

Interpreted languages and your Latin friends .. 4
Distancing yourself from the computer... 5

THE TOOLS YOU'LL NEED ... 6

1: A TEXT EDITOR .. 6
2: A WEB BROWSER ... 7
3: A JAVASCRIPT REFERENCE... 7
4: A WORKING DIRECTORY .. 8
5: AN HTML EDITOR (OPTIONAL) ... 9

YOUR FIRST PROGRAM.. 9

TEMPLATE CODE.. 10
THE REMAINDER .. 11

Objects .. 11
Methods... 11

WRITING VALID PROGRAMS.. 12

SEMANTICS .. 12
SYNTAX ... 12

Programs must begin with “<script language=”javascript”>” 13
Programs must end with “</script>” .. 13
Javascript is case sensitive ... 13
Javascript allows comments ... 13
Javascript ignores whitespace .. 13
Javascript programs are lists of statements separated by semicolons 13

DESCRIPTION OF “DICE” ... 14

QUESTIONS .. 17

PROGRAMMING CONCEPTS ... 17

VARIABLES .. 18
Integers / Floats .. 18
Strings ... 18
Booleans.. 18
Arrays.. 19

IF / ELSE... 19

Page 2 of 36

If-else ladder ... 20
Code blocks... 20

CASE.. 20
The switch ... 21
The case statement .. 21
The default... 21

FOR / BREAK / CONTINUE ... 22
The initializer .. 22
The conditional ... 22
The iterator ... 22
Continue.. 22
Break ... 23

COMMENTS .. 23
FUNCTIONS / RETURN ... 23

Name... 24
Parameters.. 24
Body .. 24
Return value .. 24

WHILE / DO … WHILE .. 25
OPERATORS.. 26

A LARGE EXAMPLE: SHUFFLING CARDS... 26

CODE SUMMARY.. 29
Using functions properly... 30
Program variables .. 31
Function addCards()... 32
Function getRandomNumber() ... 34
Function shuffleTwoCards() ... 34
Function shuffle().. 34
The remainder ... 34
The results... 35

YOUR PROGRAMMING FUTURE.. 35

Page 3 of 36

Hello World

An introduction to computer programming

Scared yet? Well don't be. Computer programming scares beginners away for two
reasons: the massive "introduction" to computer programming tomes, and the beginners
themselves. With your help, I would like to confront both issues.

If I said that you could read a 2092 page "Gray's Anatomy in 21 days" to become a
proficient surgeon, would you believe me? Would you blame yourself if you tried and
failed? I hope you answered an emphatic "no" to both questions. Similar statements
plague introductions to computer programming. Unfortunately, many early programmers
sit down with huge books to learn programming all at once. With your help, I would like
to introduce you to computer programming

If I told you that most people most people fail to learn computer programming because it
is too simple, would you believe me? This time you should. Most people fail to learn
computer programming because they try to do too much at once. A computer does
anything you tell it to. Perfectly. But that's it. Computers never "get it" and run what
you meant to type. If you want to make your computer do something, you tell it with a
language that uses only small, precise, and un-ambiguous commands. With your help, I
would like to help you begin to understand one of the small, precise, and un-ambiguous
languages. In fact, I would like to help you begin to understand all of them.

Why "Hello World?"

In 1973, Brian Kernighan wrote the paper, "A Tutorial Introduction to the Language B."
In it, Kernighan wrote several small B programs to illustrate important concepts. Many
of these included obscure ways to print "Hello World" to the screen.

Tradition took over, and now almost every programming book includes a variation of
these programs. Unlike the originals, the current "Hello World" is the simplest useful
computer program – one that writes the sentence "Hello World." to the screen. In this
introduction, I plan to give you the simplest possible introduction to computer
programming that allows you to create something useful.

If history interests you, the "B" language quickly transformed into the very popular "C"
language. Several years later, "C" evolved into one of today's most popular languages:
C++.

Javascript: your first programming language

Page 4 of 36

To introduce you to computer programming, we'll use what is perhaps the most simple
and useful language on the internet: Javascript. We'll use Javascript for two reasons:
Javascript is an interpreted language with a very common interpreter, and it is also very
high-level.

Interpreted languages and your Latin friends
Programming languages come in two varieties: interpreted languages, and compiled
languages. To illustrate the difference, imagine that you have a group of friends that
speak only Latin. Imagine, also, that you speak only English. To talk with your friends,
then, you pay an English-Latin translator to help you.

This translator helps you by writing everything you say on paper – but in Latin. You then
give this transcription to any of your Latin friends. Since some of your Latin speak
different dialects, you ask your translator to write many copies of what you want to say.
He or she must write each copy a little bit differently, but say the same thing.

In computer programming terms, this is similar to a "compiled" language. C and C++ are
two examples of compiled languages. Computers understand only a very low-level
language (called "machine language” – Latin in our example.) To give your computer
program to other people you must use a second program, a "compiler," to translate your
instructions into the native "machine language" for their type of computer. Like a
compiler, our translator makes this conversion between English to Latin for us. This
translated form is called an executable. Unfortunately, compiled programs are "platform
specific" and run only on the specific type of computer you target them for: Windows
PCs or Macintosh computers, for example. Each platform understands a different dialect
of machine language so you must compile your program for each type of machine you
want to run on.

Instead of asking your translator to write everything you say on paper, you always have
the option to bring him or her with you. Your assistant translates everything you say as
you say it. In this role, we commonly call them interpreters.

In computer programming terms, this maps almost directly to an "interpreted" language.
Python and Perl are two examples of interpreted languages. Interpreted languages
translate your program to machine language much later than compiled languages do. In
fact, interpreted languages translate your program into machine code as your program
runs!

Each type of language has both advantages and drawbacks.

Page 5 of 36

Type of

language
Pros Cons

Compiled - Run faster than the
equivalent interpreted
program.

- Create programs that you can
distribute easily to a single
platform.

- Require that you
compile your program
for each platform you
want to install it on.

- Sometimes require that
you write different
versions of your
program to run on
different platforms.

Interpreted - Create programs that run on
any platform with the
interpreter installed.

- Are much easier to develop
and test with: do not require
that you use your computer's
command-line interface.

- Require an interpreter
- Might have errors

because of
programming mistakes
("bugs") in the
interpreter, not your
program.

Although the biggest disadvantage of an interpreted language is its interpreter, we will be
using Javascript mainly because of the popularity if its interpreter: a web browser.
Throughout this piece, you'll write programs that you can add to any web page – a
personal homepage, for example. By the end of this piece, you should be able to sit down
with a good Javascript reference and make your own programs, too.

As a side note, Javascript relates only vaguely to the popular programming language,
Java. To its credit, the Java language is much more powerful than Javascript. As
programming languages go, it is also easy to learn. Unfortunately, it carries with it much
of the baggage of a compiled language. Given these features, it is too complex for an
introduction to computer programming. However, compiled languages are the most
popular (and used) languages because they do not require an interpreter.

Distancing yourself from the computer
The earliest programming languages barely made it easier to write programs in than
machine language itself. In fact, "assembly language" is simply a set of mnemonics for
the equivalent machine-language instructions. Low-level languages talk in terms of
“registers,” “memory alignment,” and “interrupts.” Almost every term directly relates to
a concept from the hardware that supports it. We call languages like assembly "low
level" languages because they abstract very little: they mire you in the details of even the
smallest task.

"High level" languages like Javascript make a programmer's life much easier. High-level
languages talk in terms of “arrays,” “functions,” and “abstraction.” Programs that you

Page 6 of 36

write in Javascript can often be several hundred times shorter than those written in
assembly or even C++.

The tools you'll need

Now that we've chosen Javascript as your first programming language, what tools do you
need to start programming?

1: A text editor
We'll be writing our programs / web-pages in a "text editor." Text editors let you create
files without all of the special formatting information that word-processing programs add.

One text editor that comes with every Windows PC is called "Notepad." Although it
lacks almost every feature that good programmer's text editors have, it is an option. To
run Notepad, use Windows' start menu and navigate to Programs | Accessories |
Notepad.

As a much better alternative, check out one of the many free programmer's editors from
the internet. A search on Google (http://www.google.com) for "free programmer's
editor" should start you off.

In your search, look for the following features:
- syntax highlighting: good editors colour the words in your program differently

depending on their syntax. For example, the editor might colour functions black,
but output strings in blue.

- auto-indentation: programmers always indent the statements in their programs to
make the code both visually appealing and easy to read. Audto-indenting does
much of this for you.

Page 7 of 36

- macro recording: macros help you automate repetitive programming tasks.
Many programmer’s editors even let you write programs to extend or customize
their functionality to your needs!

- bookmarks: bookmarks help you efficiently jump around your code when your
programs get long.

An excellent free editor that has these features (and more) is called ConTEXT from
http://www.fixedsys.com/context/.

2: A web browser
As I mentioned earlier, the most important requirement of an interpreted language is its
interpreter. The Python language, for example, requires that you find and install the
Python interpreter for your platform.

Fortunately, almost every web browser includes a Javascript interpreter. Internet
Explorer, Netscape Navigator, and Opera are the three most popular. Since you’ll write
programs that run in most web browsers, you’ll be writing programs that run on most
web pages too.

3: A Javascript reference
This tutorial aims to introduce you to computer programming, not teach you every detail
of the Javascript language. Even if you do read the entire ECMAScript specification, you
can hardly be expected to memorize it. This is where a good reference helps.

Perhaps the weakest point of Javascript is its lack of standards. Netscape introduced
Javascript in 1995. They designed the language to help web-developers make their pages
look better in a Netscape browser. In 1996, Microsoft responded with a Javascript-like
language called JScript. As each company released newer versions of their web
browsers, they added their own bits of functionality to the language.

The ECMA standardization association partly sealed this rift with the 1999 release of
standard number 262, also known as ECMAScript. The ECMAScript specification
defines a minimum language very similar to Netscape’s Javascript version 1.1. Microsoft
claims that Internet Explorer 4+ conforms to the ECMAScript specification, and
Netscape claims that Navigator 6 does as well. However, both browsers continue to add
custom functionality on top of their base ECMAScript implementation..

Page 8 of 36

Given the differences in their implementation, we must remain aware that the same
Javascript may not execute the same (or at all) in different browsers. With the help of the
following references, you should be able to quickly find information on any of
Javascript’s specifics. The cross-reference tells you if your Javascript is standard or
browser-specific Javascript.

Javascript 1.1 specification:
http://home.netscape.com/eng/javascript/index.html

ECMAScript specification:
ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf

Current Netscape specification:
http://developer.netscape.com/docs/manuals/communicator/jsref/index.htm

Current Internet Explorer specification:
http://msdn.microsoft.com/scripting/default.htm?/scripting/JScript/doc/jsoprNot.htm

Nescape / Internet Explorer cross-reference:
http://www.coolnerds.com/xrefs/xrefjsom.htm

4: A working directory
Although you can store your programs anywhere on your hard-drive, I would strongly
recommend that you store them in separate directories under a “programming” directory.
Since anything but the smallest projects span multiple files, this structure helps separate
your programming projects from each other.

Page 9 of 36

If you want to publish your projects to the web, I would also recommend that you make
your directory names “web-friendly.” Web-friendly names use only the lowercase
alphabet, dashes, and numbers. You should avoid spaces and special punctuation. If you
don’t, Web browsers translate folders named like “Hello World” to
“www.yoursite.com/Hello%20World”. You should avoid capitalization because users
find it harder to memorize a strangely capitalized web addresses than a strictly lowercase
one. It matters on most web servers.

5: An HTML editor (optional)
If you decide to incorporate some of your Javascript into larger web pages, you might
find it difficult to hand-code the web page (not the Javascript.) If you’re in this position,
there are many great free HTML editors that let you visually edit your pages. This type
of editor is known as a “what you see is what you get” (WYSIWYG) editor. A search on
Google (http://www.google.com) for "free html editor wysiwyg" should start you off.
This tutorial does not assume that you have an HTML editor – only a text editor.

Your first program

Let’s go over the famous “Hello World” program that you just saw in the “text editors”
discussion.

To run your first program, type the above code (without the line numbers) into your text
editor. It is a very good habit to save your work every few minutes. That way, when
your computer crashes (and it will,) you only lose a few minutes of work. When you

Page 10 of 36

save your program, save it into your working directory, under a “helloworld”
subdirectory. Call it “helloworld.html”

Next, browse to (and open) your file. Once you’ve found your program, double-click it.
You should see a web page appear with the title “Hello World” and the page content
“Hello World.”

There are two types of programming statements in this (and any other) computer
program: template code, and custom code.

Template code
Template code is the minimum amount of programming (coding) to create a valid
program. This is typically a “Hello World” program without the “Hello World.” In our
example, every line except line 10 is template code. In addition, only lines 9 and 11 are
template code for our Javascript: the rest is for the web page that contains our Javascript.
Let’s go through what each line of template code means:

1: Although not strictly necessary, this line is good programming style. It tells our
browser that the web page conforms to the HTML version 3.2 specification.

2 … 4: Words inside of angled brackets (<>) are called HTML tags. They optionally
contain a forward-slash (/). Closing tags start with a forward-slash, while opening tags
do not. An opening tag “starts” something on a web page (italics, bold, or a paragraph
for example,) while a closing tag ends something on a web page. So lines 2 through 4
start the web (HTML) page, the header of the web page, and the title of the web page.

5: Since it sits between the opening and closing TITLE tags, this line sets the title of the
web page.

6 … 7: These lines end the title of the web page, then the header.

8: This line starts the body of the web page.

Page 11 of 36

9: This line starts a section of script. The section, language=”javascript”, tells the
browser that we’re about to write some Javascript.

11: This line ends our section of script.

12 … 13: These lines end the body of the web page, then finally the web (HTML) page
itself.

The great thing about template code is that you can simply copy and paste it for your next
program. Since it will be the same for each program, you need not even remember what
it does!

The remainder
After template code, we don’t have much of our program left to discuss!

Line 10 tells Javascript to write “Hello World.” to our web page. How does
“document.writeln(…)” mean “Write … to the web page”?

Objects
Javascript break browsing sessions into several entities called “objects.” Just as one
“object” in a kitchen might be a fridge, one “object” in a browsing session is a
“document.” In line 10, we’re using the “document” object. Some of the other objects
that Javascript understands are Browser, Window, and Form. Other, more powerful
languages (including Java,) use objects much more extensively. It’s called “Object-
Oriented Programming.” Although it is extremely beneficial, it is much too complex to
deal with in any more detail.

Methods
Objects wouldn’t be very useful if they did nothing. Because of this, almost every object
has a set of words (“methods”) for you to command it with. If your computer portrayed it
, a “fridge” object would have an “open” command (method.) Similarly, a “document”
object has a “writeln” (“write line”) method.

From a code perspective, methods have three main characteristics:

1) A dot (.) to separate them from the object that owns them.
2) A name followed by brackets. Ie: writeln()

Page 12 of 36

3) A list of parameters to tell the method what to do. You place the parameters
inside of the method’s brackets. Ie: the string, “Hello World.”

For more information on functions and methods, see the section in “Programming
Concepts.”

Writing valid programs
Any computer program consists of two major elements: its syntax, and its semantics.

Semantics
In spoken phrases, the semantics of a sentence tell us what it means. In programming,
the semantics of a program tell us what it does. The programming term “bug” (or
“defect”) describes a piece of code that doesn’t do what it should. This piece of code,
then, has improper semantics. Although the topic of semantics is important,
programmers rarely use the term.

Unfortunately, only programming experience teaches you how to write better programs.
Even worse, the quest for perfect programming never ends. You only get better: never
perfect. That is why we call it “the art of computer programming.”

Unlike semantic correctness, we can easily learn and test for syntactic correctness.

Syntax
To make sense in any language (spoken languages included,) you must follow the
language’s grammar. “Sentence not this English is” is not a valid English phrase. It fails
to follow several important rules of English. Like English, you must follow a certain set
of rules to create valid Javascript phrases (programs.)

Because Javascript’s syntax is so well defined (and easily tested,) your web browser
gives you an error whenever you load Javascript with incorrect syntax. Most often, your

Page 13 of 36

browser’s error message is good enough to tell you what you’ve done wrong. The error
message above tells us that line 4 of our program needs a semicolon.

Let’s go over Javascript’s syntax rules.

Programs must begin with “<script language=”javascript”>”
This is officially an HTML requirement, not a Javascript requirement. However, no
Javascript will run without this phrase. This is part of our template code.

Programs must end with “</script>”
Like the statement above, this is an HTML requirement, not a Javascript one. This, too,
is part of our template code.

Javascript is case sensitive
Do you remember when we wrote to our web page with the “writeln” method from the
document object? Since Javascript is case sensitive, “WriteLn” does not work. Note that
this does not apply to HTML phrases – the previous two rules included.

Javascript allows comments
Comments are sections of code that you’ve added to your program to make it easier to
read and understand. For more information, see the “comments” section of
“programming concepts.”

Javascript ignores whitespace
Javascript ignores all spaces, tabs, and new lines in your program unless they interrupt a
statement. Here is an example of both a valid and invalid use of whitespace.

Javascript programs are lists of statements separated by semicolons
We will go over these shortly, but we can break statements into one of several categories:

- code blocks (a group of statements between ‘{‘ and ‘}’ symbols that Javascript
treats as one statement)

Page 14 of 36

- variable definitions (tell Javascript to put aside enough storage to remember some
information for you)

- variable assignment (tell Javascript to actually put information in storage)
- method / function calls (tell Javascript to “do something” – ie: write ‘Hello

World’ to the web page.)
- program logic / flow control (execute some statements if a condition is true)
- loops (execute the same set of statements more than once)

Our next program, a Javascript dice roller, shows some of these statements in action.

Description of “Dice”
Let’s go over a more complex Javascript program to illustrate some of Javascript’s rules
of syntax.

Do you notice any similarities to “Hello World”? Of course! Template code saves us
quite a bit of typing. Aside from the page’s title (line 5,) our custom code runs only
between lines 10 and 23. Even at that, most of the code is whitespace and comments!

To run this dice program, first copy the template code from “helloworld.html” and paste
it into a new file. Next, type the custom code (without the line numbers) into your text

Page 15 of 36

editor. Again, don’t forget to save your work every few minutes. When you save your
program, put it into your working directory, under a “dice” subdirectory. Call it
“dice.html”

Next, use Windows’ Explorer to browse to your file. Once you’ve found your program,
double-click it. You should see a web page appear with the title “Dice rolling program”
and the page content “You rolled a” followed by a number between 1 and 6.

Lines 10, 12, 15, 18, and 22: The first thing you might notice about the program is the
green sections that I’ve written in proper English. These are called comments.
Comments describe sections of code to other programmers (or ourselves) that aren’t
particularly intuitive. Whenever the Javascript interpreter reads two forward slashes, it
ignores them and anything to the right of them on that line. Alternatively, you can place
your comments between the slash-star combinations, “/*” and “*/”. This second type of
comment can span multiple lines if you want. Comments should not restate the obvious.
After all, the comment “define some variables” does little to enhance your program’s
readability.

Lines 11, 13: The word var tells Javascript that we want it to remember a bit of
information. We call this bit of information a variable. Notice that we didn’t tell
Javascript what type of variable we want (a number, or some money, for example.) This
means that Javascript is a weakly typed language. Strongly typed languages require that
you tell the computer exactly what kind of information you want to store.

Also notice that these statements end with a semicolon. Except for comments,
conditional, and looping statements, you should end every Javascript statement with a
semicolon. See the section, “Programming Concepts” for clarifications on this.

As a programming convention, variables in ALL UPPERCASE are called constants.
Constants help make our code both easy to read and easy to maintain. Code without
constants is said to use “magic numbers.” Although they mean the same thing to
Javascript, would you rather read the equation “2 x PI x R” or “2 x 3.14159265359 x R”?
Also, if we use this number throughout our program, we can change a constant’s
definition much easier than we can change every place that we use its value.

Page 16 of 36

Line 16: The statement with(…) tells Javascript that we’re lazy. We’re saying that there
are certain methods (random(), and floor() in this example) that belong to a certain object
(Math). However, we don’t want to type “Math.random()” so just let us type random().
Note that this laziness applies only to statements inside the curly braces ({ and }).

Line 19: This line packs quite a punch! Let’s break it down even further.

Although it looks complex, this line really breaks into a few method calls and a little bit
of math.

1) randomNumber = …: This is called a variable assignment. Do you remember
when we used the var word to ask Javascript to store our bit of information? Now
we’re telling Javascript that we’d like the randomNumber variable to store the
results of …

2) floor(…): The outer wrapper of most of this line is the floor() method.
Remember, we’re inside a “with(Math)” block, so we’re actually calling the
Math.floor() method. Math’s floor() method takes a number as a parameter and
returns the floor of that number as a result. If you are unfamiliar with the term,
flooring a positive number essentially rounds it down. The parameter that we’re
passing to floor is …

3) random() * (DICEFACES – 1): Again, we’re in the “with(Math)” block, so
random() is a method from the Math object. According to Chaper 4 of Netscape’s
Javascript Reference, Math.random() returns a decimal number between 0 and 1.
So how do we convert this to a random number between 1 and 6? Easy! First,
find out a number between 0 and 5. We can do this by multiplying the return of
random() by 5. The DICEFACES constant, as defined earlier, does quite a bit to
make our code more readable. Note that the Javascript term for multiply is “*”

4) + 1: Finally, we add 1 to the result of the floor. This converts a number between
0 and 5 to a number between 1 and 6.

Page 17 of 36

A common mistake in this last bit of code would have been to multiply the random
number by the number of faces on your die. Unfortunately, this would give you a dice
roll between 0 and 6!

Line 23: We’ve already seen the document.writeln() method in action. Unlike the
previous usage, this line seems to mix addition with sentences (called strings in
Javascript.) Fortunately, Javascript offers a very useful feature called string
concatenation. That is, Javascript makes a new string out of two smaller strings if you
separate them with a “+”. In this case, the writeln() method thinks we’re passing it the
single string “You rolled a 5” if in fact we did.

Questions

At this point you’re probably asking the question, “How did you know what methods to
use?” or more likely, “How did you know how to make that program?” That’s a
completely valid question. It all comes down to how well you know your toolbox.

Take, for example, an apprentice carpenter who has just been introduced to his or her first
tool: a hammer. They can nail boards together with abandon but lack the skills to make a
house. Luckily, apprentice carpenters have master carpenters to introduce them to the
proper tools of their profession: the band saw, nail gun (wow! There’s a more efficient
way?), and many more.

Early programmers find themselves in a similar situation. You know how to print to the
screen, but soon tire of writing “Hello World” programs. That’s where your trusty
reference material saves you. I mentioned earlier that you’re wasting your time if you
memorize every method of every class. However, you should glance over your toolbox
at least once so you know what’s available to you. I recommend that you skim chapters 2
through 7 of Netscape’s Javascript reference or the description column of the Coolnerds
cross-reference to see what Javascript offers.

Programming Concepts
Although you might be aware of the tools that your language provides, I still haven’t
introduced you to the statements that control those tools. After all, we still need ways to
express common concepts like repetition (“hammer that wall until lunch”) and
conditionals (“if you’re tired then hammer slower.”)

Although they differ slightly in their implementation, almost every recent programming
language supports the following concepts: variables, if / else, switch, for, comments,
functions, return, while, break, continue, do … while, and operators. Again, quickly
glance over the Netscape Javascript reference (chapter 3) to familiarize yourself with
additional features.

Page 18 of 36

Variables
Computers use variables to store information for us. In general, you create one of five
types of variables: integers, floats, strings, booleans, and arrays. As I mentioned earlier,
Javascript is a weakly typed language. Because of this, you do not have to tell Javascript
what type of variable you want to store – simply use the ‘var’ statement. Try to name
your variables descriptively. For example, use the variable name “menuSelection”
instead of the cryptic “m.” All languages have rules about what letters you can use in
variable names, and how long your variable names can be. For the specifics, see one of
your handy references.

Integers / Floats
The difference between an integer and a float (“floating point number”) is that floats also
store decimal places. It sounds simple, but the computer makes a very clear distinction.
Most programming languages break the distinction even further by letting you say how
big of a number you want to store. With these additional distinctions, you’ll often see the
terms “byte,” “short,” “int,” and “long” describe integers. Likewise, you’ll often see the
term “real,” “float,” and “double” describe floating point numbers.

Javascript examples:

Strings
Strings store sequences of letters, numbers, and possibly other characters. You normally
surround strings with single (‘) or double (“) quote characters. Examples include “Hello
world”, “¦ ¦ ¦ ¦ ¦ ¦ ¦ ”, and words that the multi-language “Unicode” convention
supports. Some languages define strings as “char[]” or “char*”, stemming from the way
that C and C++ store strings as arrays (lists) of characters.

Javascript examples:

Booleans
Boolean variables are those that represent “true” or “false” values. Many languages do
not directly support boolean variables, but instead use some sort of mapping. For
example, “1” might represent “true“ and “0” might represent “false.” Javascript uses the
empty string (“”) and the value “false” to represent false values. Everything else works
out as “true.”

Page 19 of 36

Javascript examples:

Arrays
Arrays hold lists of variables to give you a convenient way to access them. Rather than
create 100 “phone number” variables, you can create a single “phone number” array to
hold 100 numbers. Usually, all of the variables must be of the same type (number, string,
etc.) Most languages use the ‘[‘ and ‘]’ symbols to define an array, and nearly every
language uses those symbols to access the elements of an array. Javascript lets you mix
the types of variables in an array.

One tricky point about arrays in most languages is that they start from zero, not one.
They are “zero-based.” This means that you access the first element of myArray with
“myArray[0]”.

Javascript examples:

If / Else
“If-Else statements” give us the power to make our program “branch.” They let our
program behave differently depending on the results of a test. This “test” is simply a
boolean value: true or false.

“If-Else statements” are called conditional statements. They operate differently in
different conditions. Like all other conditional statements, you can follow them with

Page 20 of 36

either a single statement or block of code. Conditional statements should not have a
semicolon at the end of the line, although the code directly underneath should.

If-else ladder
We can string together “if (…) else if (…) … else if (…) else (…)” statements to create
what is known as an “if-else ladder.” With this structure, our program executes only the
first statement (or block of code) that passes its boolean test. We usually use the final
“else” statement as a “catch-all” to execute when none of the above tests pass. Of course,
anything past the first “if” statement is optional. The code below shows an example if-
else ladder.

Code blocks
We surround statements with the symbols, ‘{‘ and ‘}’ to tell our language that those
statements are a block of code. Blocks of code cause our programming language to treat
them as one statement. Rather than have a conditional statement execute only one line of
your program, code blocks let you execute many.

Although the statements inside the block of code need semicolons at the end of the line,
the block itself does not.

Javascript example:

Case

Case statements work very much like an if-else ladder. They simplify the very common
task of performing different operations based on one of many possible values of a
variable. For example, you might use a case statement to process a user’s menu
selection. Most languages restrict this comparison to numeric variables, but Javascript
does not.

Page 21 of 36

We create a case statement in three parts: the switch (the variable being tested), case
statements (operations based on a possible values of that variable), and perhaps a default
statement (the catch-all clause.)

The switch
The switch statement tests the variable that you write against each of the following case
statements.

The case statement
“Case statements” tell the computer “In the case that my variable is (…), then execute
this statement.” Like other conditional statements, you can always replace “this
statement” with a block of code containing many statements.

Tricky point: You must finish your statement (or block of code) with a “break;” statement
if you want to exit from the entire case statement. Otherwise, Javascript continues to
process (without testing) the rest of the commands. This is an obscure feature known as a
“fall-through.”

The default
As you might have guessed, Javascript calls your default case when none of the other
case statements match. You can leave out this case if you want Javascript to take no
action at all.

Javascript example:

Page 22 of 36

For / break / continue
Like switch statements, “for-loops” use a test to help control the flow of your program.
Unlike switch statements, though, they execute the same statement (or block of code)
until the test is false.

We can break a for-loop into three parts: the initializer, conditional, and iterator. We
separate each part with a semicolon.

The initializer
Programming languages call the initializer of your for-loop just as they starts to process
the for-loop If you write a for-loop to run a specific number of times (known as a
counted for-loop), you normally use the intializer to declare a variable and set its value to
0. For example, “for (var counter = 0; counter < 10; counter++).”

The conditional
Programming languages continue to execute the statement (or block of code) beneath
your for-loop as long as the conditional evaluates to true. For example, “for (var counter
= 0; counter < 10; counter++).”

The iterator
Programming languages execute the iterator of a for-loop after they execute the statement
or block of code. If you write a counted for-loop, you’ll usually use this space to
increment the variable you’re counting with. For example, “for (var counter = 0; counter
< 10; counter++).”

Javascript example:

Aside from what looping statements already offer, we have two more statements to help
control a looping statement. These are continue and break.

Continue
The continue statement tells our programming language to stop processing our block of
code. Instead, the programming language starts the next iteration of the loop. When it
starts the next loop, it executes the iterator then re-evaluates the conditional.

Page 23 of 36

Break
Break statements break out of a loop or block of code. When your programming
language encounters a break statement, it simply jumps to the end of your block of code
and continues processing.

Javascript example:

Comments
As I mentioned earlier, comments are sections of code that you add to your program to
make it easier to read and understand. Most languages support two types of comments:
line comments and block comments. As with other languages, Javascript ignores the
comment characters and all text until the end of the comment.

In Javascript, line comments start with a “//” and end at the right-hand edge of the page.
Because they end at the end of the page, they work only for one line. Some other
languages use the hash (#) symbol to start a line comment.

In Javascript, block comments start with a “/*” and end with a “*/”. Unlike line
comments, they may span several lines.

Aside from that simple summary, the most important thing to say about comments it to
use them. They may seem to be a nuisance at first, but they help focus your mind and
describe the “high-level” flow of your program.

Functions / return
We’ve seen and used functions already, but not formally. When we discussed them
earlier, we called them “methods.” Functions let us create (and name) a block of code to
perform some logical task. Rather than write the code to generate a random number each

Page 24 of 36

time we want to, we can simply call Javascript’s Math.random() function. This function
contains all the code we need to get a random number.

A function is made of four parts: name, parameters, body, and return value.

Name
A function’s name is the short-form that we use to refer to the function’s block of code.
Always try to name your function to properly describe its purpose. Function names like
“doIt()” or “process()” do little to improve your program’s readability. Like variable
names, all languages have rules about what letters you can use in function names and
how long your function names can be. For the specifics, see one of your references.

Parameters
Most functions work with one or more input parameters. For example, the Javascript
document.writeln(…) function writes its string parameter to the web page. We place
parameters between brackets immediately after the function name. Of course, your
function may take no parameters. In this case, you put nothing in between the brackets.
Most languages require that you tell them the types of the parameters, but Javascript does
not.

Body
The body of your function defines the code that you want this function to execute. You
may use any of the input parameters during your code. An important point to note,
however, is that you cannot generally modify these input parameters. If you do, the
change remains local to your function only – and will not remain once your function
exits.

Return value
Most functions of any usefulness return some sort of result. For example, the Javascript
Math.ceil(…) method essentially returns a rounded-up version of its input. The
Javascript Math.random() method returns a random number between 0 and 1. Strongly-
typed languages require that you tell them what type of variable your function returns,
but Javascript does not.

Javascript example:

Page 25 of 36

While / do … while
The while and do … while loops are minor variations of for loops.

While-loops execute their block of code as long as their test holds true. Use a while loop
when you have no need for the initializer or iterator portions of a for-loop. While-loops
do not execute their block of code (even the first time) if the test holds false.

Javascript example:

Do-while loops slightly twist the while-loop concept in that they guarantee that the code
block will run at least once. Use this type of loop when you want to continuously test the
results of an operation that happens inside your block of code. Note that unlike the other
while-statements, this one must end with a semicolon!

Page 26 of 36

Operators
Operations are the simplest operations in a programming language. They are also the
most essential.

Typical operations include comparisons (ie: <, >, ==,) arithmetic (ie: +, -, /, *, %,) and
logic (ie: !, &&, ||.) Any good programming reference for a language lists and explains
all of its operators. It should also list their relative precedence. In programming terms,
rules of precedence tell a programming language the order to evaluate a list of operators
in the same statement. Like the old mathematical precedence rule (BEDMAS – brackets,
exponents, division, multiplication, addition, and subtraction,) programming languages
follow similar conventions.

As an important note, language designers define operator precedence rules simply
because a language cannot survive without them. In practical terms, good programmers
always use brackets to identify their desired order of operations. They do this even when
their desired order of operations match the language’s precedence rules. We have better
things to do in life than memorize (or expect other to memorize) long lists of precedence
rules.

A Large Example: Shuffling Cards

To finish this introduction to computer programming, let’s review a rather large piece of
Javascript that shuffles and displays a deck of cards. I’ve written this program primarily
to illustrate the concepts that we just covered. However, this “tutorial code” is by no-
means the best code: I’ll point out items that I would have written differently if it were
not a tutorial.

Page 27 of 36

I’ll also mention some programming points that have nothing to do with syntax. These
will help you with programming in general, not simply programming in Javascript.

Page 28 of 36

Page 29 of 36

Code Summary
We can break this card-shuffling program into three parts: adding cards to the deck,
shuffling the cards, then finally displaying the cards. As you’ll soon see, it’s no surprise
that I’ve written functions to handle the first two operations. These functions parcel large
amounts of code into easily understandable operations.

Page 30 of 36

Using functions properly
This is one tenet of good computer programming. Like any other endeavour, you need to
learn how to delegate responsibility.

If you want to write a program to shuffle cards and display them, you might at first feel
overwhelmed by the size of the task. Being one of keen management whit, you can
delegate your responsibility. Maybe you’ll get one friend to write the part that creates the
deck of cards. You might also get another friend to write the part that shuffles the cards.
While you’re at it, you might as well get another friend to write the part that displays the
cards.

If your friend asked you to write a bit of code to create a deck of cards, you could just
run off and start coding. After all, it’s about a single page of programming.

If your friend asked you to write a bit of code to display a shuffled a deck of cards, you
could just run off and start coding. After all, it’s much less than a single page of
programming.

If your friend asked you to write a bit of code to shuffle a deck of cards, you might at first
feel overwhelmed by the size of the task. After all, how do you shuffle an entire deck of
cards? Being one of keen management whit, you could delegate your responsibility.
Maybe you’d get a friend to write a part that switches two (random) cards and just use
that part many times.

If your friend asked you to write a bit of code to switch two cards in a deck, you could
just run off and start coding. After all, it’s much less than a single page of programming.

Do you see any patterns in this logic? Of course! If a programming task contains more
than one about one page of logic, you’re probably trying to say too much at once. At that
point, you should break your task into several independent sub-tasks. Of course, if your
friends don’t want to write the bits of code, you can always do it.

How does this help you in the long run? It helps in two respects: maintenance, and
readability.

Maintenance
Let’s say you’ve written your card-shuffle and display program, but want to tweak it.
Perhaps you want to change the shuffling algorithm to comply with the “Las Vegas
International Committee for Card Shuffling” guidelines. If you’ve written your program
poorly, you might wade through pages of code before you find the part that shuffles your
cards. In fact, since you wove it so intricately with the rest of your code, you also worry
that you’ll break the “add cards” bit, or the “display cards” bit.

However, if you’ve write your code properly, you can search for the “shuffle” function
and restrict your changes to that function alone.

Page 31 of 36

Readability
Reading (and understanding) a well-written computer program is much like reading a
book. When you want a very high-level view of a book, you simply read the first level of
the table of contents. For example, a quick scan of this document’s table of contents tells
you that we’re learning about “The Tools You’ll Need,” “Your First Program,” and so
on. Likewise, we know that our Card Shuffling program executes the functions
“addCards(),” “shuffle()”, then displays the cards.

After this glance at our book, we might want to learn more about “The Tools You’ll
Need.” By scanning the table of contents one level deeper, we can see that we’ll need “A
Text Editor,” “A Web Browser,” and a few more items. Likewise, we know that our
“shuffle()” function in the Card Shuffling program executes the function
“shuffleTwoCards()” many times. Without reading any code that actually does anything,
we already have a good idea of what our program does.

We can continue to break the structure of a book or computer program into finer details
until we finally arrive at sentences or lines of code.

Program variables
Lines 12-25 create several variables for our program to use.

Constants
Lines 12-21 define constants for our program to use. By glancing through the code, it is
easy to see how our constants improve the program’s readability. One sticky point is that
the constants on line 12 define some of the special cards with a zero-based index. That
is, the first card (ACE) would be card #0 in a list. Likewise, the 12th card (QUEEN)
would be card #11 in a list.

Working variables
Lines 22-25 create variables that we actively work with throughout our program. Notice
that we create two arrays: one that we populate immediately, and one that we populate
soon after.

Lines 21 and 22 give us a convenient way to find out the name of a suit from its suit
number. We arbitrarily define the suit numbers on line 21. Computer programmers call
this a look-up table since you look up the name of a suit once you know its number. As
you will soon see, the expression “suits[HEARTS]” is much easier to read than a large
case statement to return a suit name from a suit number.

Page 32 of 36

Function addCards()
As its comments describe, lines 27-68 define a function that adds cards to our program’s
deck. This is the deck that we defined in line 25.

Nested for-loops

At the highest level, this function loops through each of the 4 suits. Nested in this “outer
loop” is an “inner loop” that goes through each of the 13 cards of that suit. As the
comments mention, the outer loop runs much slower than the inner loop – because the
inner loop happens 13 times for each time that the outer loop gets executed. Notice your
added bonus of bad code: the comparison in each loop uses a magic number! We should
replace the numbers ‘4’ and ‘13’ in the loops with the NUMBEROFSUITS and
CARDSPERSUIT constants to make this code easier to understand.

Flattened arrays
The next part of our function, line 38, uses a technique called flattened array indexing.
Even the term is complicated, so let’s explain the concept.

Pretend you have a friend who lives in a 5-story apartment building. Each story has 6
apartments. If the landlord wants to give an apartment number to each unit – with no
gaps or doubles, he or she might use the following system:

1) Number the apartments on the bottom floor (floor number 0 in computer
speak) from 0 to 5.

2) Number the apartments on the next floor (floor number 1 in computer speak)
from 6 to 11

3) …

In fact, he or she might make their life a little easier with a little math. To find out the
apartment number of any unit on any floor, simply:

1) Count the number of units in the floors below. To work this out, multiply the
number of floors below the unit by the number of units per floor. Notice that
the number of floors below the 4th floor (3) is the same as the 0-based number
of the 4th floor (3).

2) Add the unit’s hallway-position to that number. Ie: add 0 for the 0th unit, and
4 for the 5th unit.

So the third unit on the 4th floor would be:

= (3 * UNITSPERFLOOR) + 2
= (3 * 6) + 2
= #20.

Page 33 of 36

How does this apply to cards? Well, rather than use their proper names, we can number
the suits of our deck between 0 and 3. Next, we can number the cards of each suit
between 0 and 12. Now that we know the 0-based index of the suit (floor) and 0-based
index of the card (hallway-position,) we can give each card a unique number between 0
and 51. This fits very nicely into a single 52-element array with the formula: (“suit
number” * “cards per suit”) + “card number”.

Why do we do it this way? The reason is that a little complexity now saves us a lot of
complexity later. First, we can print a single list of 52 cards easier than 4 lists of 13
cards. After all, the “4 suits of 13” concept relates very little to a shuffled deck of cards.
Second, we can shuffle a single list of 52 cards much easier than 4 lists of 13 cards. We
can switch two entries of a single array much easier than we can switch two entries out of
four arrays.

So given the suit number (outer loop) and card number (inner loop), line 38 computes the
index into the array that has room for 52 cards.

String preparation
Lines 40-41 prepare a variable to eventually hold a string like “One-eyed Jack of Hearts.”
At this point, the string is empty.

Conditional Logic
Lines 43-47 check if the card is a one-eyed card or not. It is a very typical example of
conditional statements inside an if-statement.

When we convert this statement into English, we read it something like: “If the card is a
‘King of Diamonds’ OR ‘Jack of Hearts’ OR ‘Jack of Spades’ then add “One-eyed” to
the string we’re preparing. Notice the HTML code <i> and </i> that puts our words in
italics.

Case statement
Lines 49-59 illustrate a typical case-statement. In it, we map the named card-numbers
(Ace, Jack, Queen, King) as defined earlier into their English equivalents. If there is a
match, we add this slang name to the string we’re preparing. Otherwise, we simply add
the card number (plus one! Don’t forget that our zero-based card number 1 is really the
second card.)

Page 34 of 36

Suit name
As I mentioned earlier, lines 64-65 use a lookup-table to convert a suit number to a
proper name.

Add the card

To complete this function, we place the full name of the card (ie: “2 of Hearts”) into the
part of the deck that we computed earlier.

Function getRandomNumber()
Lines 70-75 define a function to return a random number between 1 and the parameter
you pass to the function. I’ve simply wrapped our dice-rolling random number generator
neatly into a function.

Function shuffleTwoCards()
Lines 77-92 describe a function that swaps two cards in our deck. The temporary-value
technique that this function uses is the most common (and efficient) way to swap two
variables. Note that our program chooses the firstIndex and secondIndex with the random
number function that we wrote.

Function shuffle()
Lines 94-107 shuffle the deck. As you might notice, it does nothing more than
shuffleTwoCards() many times. This is a perfect example of good functional
programming.

You might notice that this function uses a while loop and break statement to control a
counted loop. If it weren’t for tutorial purposes, I should have written this as the for
loop:

The remainder
Lines 109-120 actually make the high-level structure of our program. First, lines 111 and
112 delegate the responsibility of creating and shuffling the deck. Finally, we cycle

Page 35 of 36

through the deck and print each card name on its own line. The “
” is our way to
tell Javascript to start a new line. Again, notice the while loop that we’ve cobbled
together to simulate a for-loop. As you may guess, I should have written this as a for-
loop.

The results

Your Programming Future
As I mentioned near the beginning of this piece, I’ve aimed to introduce you to computer
programming – not teach you its entirety. Do not let this statement dissuade you, though.
The trait that unites all good computer programmers is their programming skill. You’ll
need to learn new syntax rules as you move between programming languages, but the
core programming principles rarely change. In fact, you can pick up any programming
language with the fundamentals that this tutorial has taught you.

If you decide to pursue computer programming, you’ll need to decide on a language and
learn it well. Once you think you’ve learned a language, you’ll have to practice it well.
Start with a well-written book that has a good index. There are many propellerheads that
have written 1000 page programming books. Ignore that unfortunate majority and look

Page 36 of 36

first for a book that reads well. Next, come up with some sample questions (“What are
the parameters to the document.writeln() method?”) and see how quickly you can locate
their answers. Once you’ve learned a language or two, you’ll find that you can easily use
internet searches and tutorials to teach yourself a new language.

Javascript is an excellent language to add functionality to your website. In fact,
Javascript is a major component of a new trend in web-development called Dynamic
HTML, or DHTML for short. Aside from web development, though, Javascript offers
very little power.

To create more powerful programs for your web site, ask your hosting company (ie:
school administrator, internet service provider) if they support the “Perl,” “PHP,” or
“Python” languages. Any of these are powerful enough to support almost any application
you might write. However, they are interpreted scripting languages and carry with them
the burden of that title.

To create programs that are fast, powerful, and easy to distribute, I would highly
recommend that you explore compiled languages like Java, C#, or C++. These languages
offer tremendous amounts of pre-written code in standard libraries, software development
kits (SDKs,) and application programming interfaces (APIs.) Nearly every professional
software developer has this type of language as his or her “native tongue.”

Whatever language you choose, though, make sure that you use its object-oriented
capabilities to the fullest. Object-oriented programming has literally transformed the
software development industry – and for good reason.

I wish you luck and perseverance.

