HELLO WORLD ...t s 3

AN INTRODUCTION TO COMPUTER PROGRAMMING.veveivestesresresseeseessessessessessessessessesses 3
WHY "HELLOWORLD 2" ..ttt sttt sttt st sttt sae bt snesneeneas 3
JAVASCRIPT: YOUR FIRST PROGRAMMING LANGUAGE.......ccutitiereeeeeeieniesiesiessessessessesnens 3
Interpreted languages and your Latin friendsSccoeveeereeienencnesc e 4
Distancing yourself from the COMPULES...........ccooveiieieiie e 5
THE TOOLSYOU'LL NEEDccociiiitieiieieieeie et 6
12 A TEXT EDITOR ..vitetirieeuieueetestestestestessesseesesseessestesaesbesae e bt sbesaeesee e e sessesbesbesbessesneeneenees 6

22 A WEB BROWSERviutitetestessessesseetessessessessessessessessssssssssssessessessessssnssssessessessessessennenns 7
3. A JAVASCRIPT REFERENCEccuttuietestestestessessessesseessessessessessessessessssssessessessessessessensenns 7

4: A WORKING DIRECTORY ...ceuveieiiestessesseasesseseesessessessessessessessssssssssssessessessessessessessssnsens 8
5: AN HTML EDITOR (OPTIONAL) ..veeuteiteesteeiesseesseesesseesseeseseesseessesssessssssssssssseessessssnes 9
YOUR FIRST PROGRAM ...ooitiieieiesie sttt sttt st enesnesneenes 9
TEMPLATE CODE-......ucittittrueeueeiessestestestessessessesseesessessessesbessessessesssessesessesaesbessessessesssenes 10
THE REMAINDER ...vetiiteetieteeeeiestestestessessessessessessessessessessessessessesseenssssessessessessessessensennes 11
OB ECLS ... e 11
IMIEENOOS. ...ttt b et bbb 11
WRITING VALID PROGRAM S......ooiiiiieeese st st 12
SEMANTICS ... teteeteeteeseeseetestestestessesseeseeseese e e esessessessessesseaseeseessensensestessensesseasenseenenseeneen 12
SYNTAX 1ttt sttt sttt ettt et e s e b e s bt bt e bt e st e e e e et e s ee e besb e e bt e st e st et e b e b e naeebenrenneeneenean 12
Programs must begin with “ <script language="javascript” >"ccccceeerercunee 13
Programs must end With “ </SCIIPt>"ocvccieieiece e 13
JaVaSsCript IS CASE SENSIIVE......ecieeiecieeie e ee e e e e st ae e e sseeaeeneenne s 13
Javascript allOWS COMMENTS........coiiiiiecie e 13
JavasCript IgNOreS WhItESPACEeoerierieeeeiee ettt 13
Javascript programs are lists of statements separated by semicolons..................... 13
DESCRIPTION OF “DICE” ...oiiiii ittt s sbe s sneenes 14
QUESTIONSteteteeteeseeseeseestestestessestesseesesseessesesessessessesaeaseeseensensensentensentesaeanenseanenneeneen 17
PROGRAMMING CONCEPTS ..ottt 17
BT Y= I8 = S 18
INEEQGENS/ FIOBLS ... eeieceeeiice et e e e sneeaeeneenneas 18

S [0 PSSR 18

2 070] == LSS 18
=\ TSROSO 19

L IR SO POTPRR 19

1S S S F=Te (o [RO RRPRRRR 20

(000 (S o] Lo 16 ST 20
(O R 20
I TS35 LT (o I 21
THE CASE SLALEIMENT ...t e e s e e e e e s e bb e e e s e sabaeeessanees 21

B (SX0 (= = LU | 21
FOR/ BREAK / CONTINUEuvteittieiteeiureeiteessseesseesssesseessesssessssesseessessnseessessnsesssessnsesssenss 22
R LS L L= GO 22

B (SX 0] o [ol 7= T 22

R (SN L= =1 (0] (R 22
(@0] | (] U1 22
BIEAK ...ttt e e s e — e e s e b a e e e e e bba e e s eabaeeesaaarreeeeans 23
(@101 1LY 1= N SR 23
FUNCTIONS / RETURN ...ciiittiiccitie e cttiscetteeeeatesseseessebsessabaessabesssasesssabessssbesssssesssssesssnsesssnsens 23
= 1117 24

s TR 1 1 0= TR 24
200 S 24
REIUNN VAIUE......eeeeeeeee ettt e s e s s e e e e e sabbe e e s snaneeeens 24

AVA T = T T VLY I 25
(@] = o7 0] S 26
A LARGE EXAMPLE: SHUFFLING CARDS. ... 26
CODE SUMMARY ...tttiitetestieesttesssttsssseessasesssssessssssssassessassessasessasseesasesssaresssaresssssesssssees 29
USING fUNCLIONS PrOPENTY.....eceeceeeieee et ens 30
ProgramvariableS...........ooeiiieii s 31
FUNCioN @ACardS()eeeeeeieriesiesiesie st 32
Function getRandomMNUMDEN ()veeveveerieieseese e ens 34
Function shuffleTWOCArds()cceceeieiiiieiie e 34
FUNCEion SNUFTTE() ... 34
LTSN €= 107= 1100 [R 34

I QTSN - U 35
YOUR PROGRAMMING FUTURE ...ttt sttt 35

Page 2 of 36

Hello World

An introduction to computer programming

Scared yet? Well don't be. Computer programming scares beginners away for two
reasons. the massve "introduction” to computer programming tomes, and the beginners
themsalves. With your help, | would like to confront both issues.

If | said that you could read a 2092 page "Gray's Anatomy in 21 days' to become a
proficient surgeon, would you believe me? Would you blame yoursdf if you tried and
failed? | hope you answered an emphatic "no" to both questions. Similar Statements
plague introductions to computer programming. Unfortunately, many early programmers
st down with huge books to learn programming dl a once. With your help, | would like
to introduce you to computer programming

If | told you that most people most people fail to learn computer programming because it
istoo smple, would you believe me? Thistime you should. Most peoplefal to learn
computer programming because they try to do too much at once. A computer does
anything you tdl it to. Perfectly. But that'sit. Computers never "get it" and run what
you meant to type. If you want to make your computer do something, you tdll it with a
language that uses only smdll, precise, and un-ambiguous commands. With your help, |
would like to help you begin to understand one of the small, precise, and un-ambiguous
languages. Infact, | would like to help you begin to understand al of them.

Why "Hello World?"

In 1973, Brian Kernighan wrote the paper, "A Tutorid Introduction to the Language B."
In it, Kernighan wrote several smdl B programs to illustrate important concepts. Many
of these included obscure ways to print "Hello World" to the screen.

Tradition took over, and now dmost every programming book includes a variation of
these programs. Unlike the originds, the current "Hello World" isthe Smplest useful
computer program — one that writes the sentence "Hello World." to the screen. Inthis
introduction, | plan to give you the Smplest possible introduction to computer
programming that alows you to creste something useful.

If higtory interests you, the "B" language quickly transformed into the very popular "C"
language. Severd yearslater, "C" evolved into one of today's most popular languages.
C++.

Javascript: your first programming language

Page 3 of 36

To introduce you to computer programming, well use whet is perhgps the most smple
and useful language on the internet: Javascript. Well use Javascript for two reasons:
Javascript isan interpreted language with avery common interpreter, and it isaso very
high-level.

Interpreted languages and your Latin friends

Programming languages come in two varieties: inter preted languages, and compiled
languages. Toilludrate the difference, imagine that you have a group of friends that
pesk only Latin. Imagine, dso, that you speek only English. To talk with your friends,
then, you pay an Engligh-Latin trandator to help you.

Thistrandator helps you by writing everything you say on paper — but in Latin. Y ou then
give this transcription to any of your Latin friends. Since some of your Latin spesk
different dialects, you ask your trandator to write many copies of what you want to say.
He or she must write each copy alittle bit differently, but say the same thing.

In computer programming terms, thisis Smilar to a"compiled” language. C and C++ are
two examples of compiled languages. Computers understand only avery low-leve
language (cdled "machinelanguage’ — Lain in our example)) To give your computer
program to other people you must use a second program, a"compiler,” to trandate your
indructions into the native "machine language’ for ther type of computer. Likea
compiler, our trandator makes this converson between English to Latin for us. This
trandated form is cdled an executable. Unfortunately, compiled programs are "platform
specific and run only on the specific type of computer you target them for: Windows
PCs or Macintosh computers, for example. Each platform understands a different didect
of machine language so you must compile your program for each type of machine you
want to run on.

Instead of asking your trandator to write everything you say on paper, you dways have
the option to bring him or her with you. Y our assstant trandates everything you say as
you say it. Inthisrole, we commonly call them interpreters.

In computer programming terms, this maps amost directly to an "interpreted” language.
Python and Perl are two examples of interpreted languages. Interpreted languages
trandate your program to machine language much later than compiled languages do. In
fact, interpreted languages trandate your program into machine code as your program
runs

Each type of language has both advantages and drawbacks.

Page 4 of 36

Type of Pros Cons
language
Compiled - Runfaster than the - Requirethat you
equivaent interpreted compile your program
program. for each plaformyou
- Create programsthat you can want to ingdl it on.
digribute easly to asingle - Sometimes require that
platform. you write different
versons of your
program to run on
different platforms.
Interpreted - Create programsthat run on - Require an interpreter
any platform with the - Might have errors
interpreter ingtalled. because of
- Aremuch eadier to develop programming mistakes
and test with: do not require ("bugs") inthe

that you use your computer's
command-line interface.

interpreter, not your
program.

Although the biggest disadvantage of an interpreted language isits interpreter, we will be
using Javascript mainly because of the popularity if itsinterpreter: aweb browser.
Throughout this piece, you'll write programs that you can add to any web page—a
persona homepage, for example. By the end of this piece, you should be able to sit down

with a good Javascript reference and make your own programs, too.

Asasde note, Javascript relates only vaguely to the popular programming language,
Java Toits credit, the Javalanguage is much more powerful than Javascript. As
programming languages go, it isaso easy to learn. Unfortunately, it carries with it much
of the baggage of acompiled language. Given these fetures, it istoo complex for an
introduction to computer programming. However, compiled languages are the most
popular (and used) languages because they do not require an interpreter.

Distancing yourself from the computer
The earliest programming languages barely made it easier to write programsin than
machine language itsdf. In fact, "assembly language’ is smply asat of mnemonicsfor
the equivdent machine-language ingructions. Low-leve languagestak in terms of
“regigers,” “memory dignment,” and “interrupts” Almost every term directly relates to
a concept from the hardware that supportsit. We cal languages like assembly "low
levd" languages because they abdract very little: they mire you in the details of even the

smallest task.

"High levd" languages like Javascript make a programmer’'s life much eeder. High-leve
languages tak in terms of “arrays,” “functions,” and “abstraction.” Programsthat you

Page 5 of 36

write in Javascript can often be severd hundred times shorter than those written in
assembly or even C++,

The tools you'll need

Now that weve chosen Javascript as your first programming language, whét tools do you
need to sart programming?

1: A text editor

Well be writing our programs/ web-pagesin a"text editor.” Text editors et you create
fileswithout dl of the specid formatting information that word-processing programs add.

Onetext editor that comes with every Windows PC is caled "Notepad.” Although it
lacks dmost every feature that good programmer's text editors have, it isan option. To
run Notepad, use Windows start menu and navigate to Programs | Accessories |
Notepad.

Asamuch better dternative, check out one of the many free programmer's editors from
the internet. A search on Google (http://www.google.com) for "free programmer's
editor” should start you off.

<IDOCTYPE html PUEBLIC "-//W3C//DTD HTML 3.Z//EN">-
<HTML:=
<HEAT::
<TITLE>
Hello World
</TITLE=
< /HELD
<BODT
<ABCRIPT lancuage="jawvascript” type="text/jawvascript™=
docunment.writelni"Hellao World.™):
< /SCEIPT:
< /BODY-
< /HTHML>

00 = M M L =

e o
L =0

In your search, look for the following features:

- syntax highlighting: good editors colour the wordsin your program differently
depending on their syntax. For example, the editor might colour functions black,
but output stringsin blue.

- auto-indentation: programmers aways indent the Satementsin their programsto
make the code both visudly gppeding and easy to read. Audto-indenting does
much of thisfor you.

Page 6 of 36

- macro recording: macras help you automate repetitive programming tasks.
Many programmer’s editors even let you write programs to extend or customize
their functiondity to your needd

- bookmarks: bookmarks help you efficiently jump around your code when your
programs get long.

An excellent free editor that has these features (and more) is called ConTEXT from
http:/Aww fixedsys.com/context/.

2: A web browser

As| mentioned earlier, the most important requirement of an interpreted languageisits
interpreter. The Python language, for example, requirestha you find and ingdl the
Python interpreter for your platform.

Fortunately, dmost every web browser includes a Javascript interpreter. Internet
Explorer, Netscape Navigator, and Opera are the three most popular. Since you' Il write
programs that run in most web browsers, you' Il be writing programs that run on most
web pages too.

3: A Javascript reference

Thistutorial amsto introduce you to computer programming, not teach you every detall
of the Javascript language. Even if you do read the entire ECM A Script specification, you
can hardly be expected to memorizeit. Thisiswhere agood reference helps.

Perhaps the weakest point of Javascript isitslack of standards. Netscape introduced
Javascript in 1995. They desgned the language to help web-devel opers make their pages
look better in a Netscape browser. 1n 1996, Microsoft responded with a Javascript-like
language called JScript. As each company released newer versions of their web

browsers, they added their own bits of functiondity to the language.

The ECMA standardization association partly seded this rift with the 1999 release of
standard number 262, dso known as ECMAScript. The ECMA Script specification
defines aminimum language very smilar to Netscape' s Javascript verson 1.1. Microsoft
clamsthat Internet Explorer 4+ conforms to the ECM A Script specification, and
Netscape claims that Navigator 6 does aswell. However, both browsers continue to add
custom functiondity on top of their base ECMA Script implementation..

Page 7 of 36

Internet
Explorer

11 olpldnoll

Metsape

El ECMASCcript D Custom Extensions

Given the differencesin their implementation, we must remain aware that the same
Javascript may not execute the same (or at dl) in different browsers. With the help of the
following references, you should be able to quickly find information on any of

Javascript's specifics. The cross-referencetdls you if your Javascript is standard or
browser-specific Javascript.

Javascript 1.1 specification:

http://home.netscape.com/ena/javascript/index.html

ECMA Script specification:
ftp://ftp.ecma.ch/ecma- /Ecma- 262.pdf

Current Netscape specification:
http://deve oper.netscape.com/docsmanua s'communi cator/jsref/index.htm

Current Internet Explorer specification:
http://msdn.mi crosoft.comy/scripting/defaul t.ntm?/scri pti ng/JScri pt/doc/j soprNot.htm

Nescape / Internet Explorer cross-reference:
http://mww.cool nerds.com/xrefg/xrefjsom.htm

4: A working directory

Although you can store your programs anywhere on your hard-drive, | would strongly
recommend that you store them in separate directories under a*“programming” directory.
Since anything but the smallest projects span multiplefiles, this structure helps separate
your programming projects from each other.

Page 8 of 36

El;'l prograrmrning
CE] - |

] blackjack.
] dice
] documents
Emizj helloworld

If you want to publish your projects to the web, | would aso recommend that you make
your directory names “web-friendly.” Web-friendly names use only the lowercase
aphabet, dashes, and numbers. Y ou should avoid spaces and specia punctuation. If you
don't, Web browsers trand ate folders named like “Hello World” to
“www.yoursite.com/Hel0%20World’. 'Y ou should avoid capitalization because users
find it harder to memorize a strangely capitaized web addresses than a gtrictly lowercase
one. It matters on most web servers.

5: An HTML editor (optional)

If you decide to incorporate some of your Javascript into larger web pages, you might
find it difficult to hand-code the web page (not the Javascript.) If you're in this position,
there are many great free HTML editorsthat let you visudly edit your pages. Thistype

of editor isknown as a“what you see iswhat you get” (WY SIWYG) editor. A search on
Google (http:/Mmww.google.com) for "free html editor wysiwyg' should start you off.
Thistutoria does not assume that you have an HTML editor — only atext editor.

Your first program

Let’sgo over the famous “Hello World” program that you just saw in the “text editors’
discusson.

1 <!DACTYPE htwl PUBLIC "-//W3C//DTD HTML 3.2//EN">
2 <HTHLZ>

3 <HEATN-

4 «TITLE>

5 Hello TWorld

= </TITLE>

7 < /HEAD=

! <BODY>

q <ECRIPT language="jawvascript” type="text/javascript™>
10 document.writeln("Hella World.™):

11 </SCRIPT>

12 < /BODT

13 < fHTHL>

To run your first program, type the above code (without the line numbers) into your text
editor. Itisavery good habit to save your work every few minutes. That way, when
your computer crashes (and it will,) you only lose afew minutes of work. When you

Page 9 of 36

save your program, save it into your working directory, under a“hdloworld”
subdirectory. Cdl it “hdloworld.html”

Next, browse to (and open) your file. Once you've found your program, double-click it.
Y ou should see aweb page appear with the title “Hello World” and the page content
“HelloWorld.”

/22 Hello World - Microsoft Internet Expl

J File Edit ‘jew Favorites Tools |
J d=tack ~ = - @3 (2] 2| Do
| Google - | |

Hello "World

There are two types of programming statements in this (and any other) computer
program: template code, and custom code.

Template code

Template code is the minimum amount of programming (coding) to creete avaid
program. Thisistypicaly a“Helo World” program without the “Hello World.” In our
example, every line except line 10 istemplate code. In addition, only lines9 and 11 are
template code for our Javascript: the rest is for the web page that contains our Javascript.
Let’'s go through what each line of template code means.

1: Although not dtrictly necessary, thislineis good programming style. It tells our
browser that the web page conforms to the HTML version 3.2 specification.

2 ...4: Wordsingde of angled brackets (<>) are cdled HTML tags. They optiondly
contain aforward-dash (/). Closing tags start with aforward-dash, while opening tags
do not. An opening tag “garts’ something on aweb page (italics, bold, or a paragraph
for example) while a cdlosing tag ends something on aweb page. So lines 2 through 4
gart the web (HTML) page, the header of the web page, and the title of the web page.

5: Sinceit gts between the opening and closing TITLE tags, thisline setsthetitle of the
web page.

6 ... 7: Theselines end thetitle of the web page, then the header.

8: Thisline starts the body of the web page.

Page 10 of 36

9: Thisline starts a section of script. The section, language=" javascript” , tdlsthe
browser that we' re about to write some Javascript.

11: Thisline ends our section of script.

12 ... 13: These lines end the body of the web page, then findly the web (HTML) page
itself.

The great thing about template code is that you can Ssmply copy and pagte it for your next
program. Since it will be the same for each program, you need not even remember what
it does!

The remainder
After template code, we don’t have much of our program left to discuss!

Line 10 tells Javascript to write “Hello World.” to our web page. How does
“document.writeln(...)” mean “Write ... to the web page’?

Objects

Javascript break browsing sessonsinto severd entities caled “objects.” Just asone
“object” in akitchen might be afridge, one “object” in abrowsing sessonisa
“document.” In line 10, we re using the “document” object. Some of the other objects
that Javascript understands are Browser, Window, and Form. Other, more powerful
languages (including Java,) use objects much more extensively. It's called “Object-
Oriented Programming.” Although it is extremely beneficid, it is much too complex to
ded with in any more detall.

Methods

Objectswouldn't be very useful if they did nothing. Because of this, dmost every object
has a st of words (“methods’) for you to command it with. If your computer portrayed it
, a“fridge’ object would have an “open” command (method.) Similarly, a*“document”
object hasa“writen” (“write ling’) method.

document.writeln(*‘Hello World.™);

1//

2
3

From a code perspective, methods have three main characterigtics:
1) A dot (.) to separate them from the object that owns them.
2) A namefollowed by brackets. le: writeln()

Page 11 of 36

3) Aligof parametersto tell the method what to do. Y ou place the parameters
indde of the method' s brackets. le: the string, “Hello World.”

For more information on functions and methods, see the section in “Programming
Concepts.”

Writing valid programs
Any computer program conssts of two magjor eements its syntax, and its semantics.

Semantics

In spoken phrases, the semantics of a sentencetell uswhat it means. In programming,
the semantics of aprogram tell uswhat it does. The programming term “bug” (or
“defect”) describes a piece of code that doesn't do what it should. This piece of code,
then, hasimproper semantics. Although the topic of semantics isimportant,
programmers rarely use the term.

Unfortunately, only programming experience teaches you how to write better programs.
Even worse, the quest for perfect programming never ends. Y ou only get better: never
perfect. That iswhy we cal it “the art of computer programming.”

Unlike semantic correctness, we can easly learn and test for syntactic correctness.

Syntax

To make sense in any language (spoken languages included,) you must follow the
language' s grammar. “ Sentence not this Englishis’ isnot avdid English phrase. 1t falls
tofollow severd important rules of English. Like English, you must follow a certain set
of rulesto create valid Javascript phrases (programs.)

x

Problems with thiz 'Web page might prevent it from being dizplaged properly
{/ | E or functioning properly. In the future, vou can display this meszage by
L]

double-clicking the warning icon dizplaved in the status bar.

v Abwayz dizplay thiz meszage when a page containg erors.

0K | Hide Details <<

......................................

Line: 4
Char 32

Eror: Expected '}
Code: 0

L o) 1 Ny oy vy |

Because Javascript's syntax is so well defined (and easily tested,) your web browser
gives you an error whenever you load Javascript with incorrect syntax. Most often, your

Page 12 of 36

browser’s error message is good enough to tell you what you' ve done wrong. The error
message above tells usthat line 4 of our program needs a semicolon.

Let’'s go over Javascript’s syntax rules.

Programs must begin with “<script language="javascript”>"

Thisisofficidly an HTML requirement, not a Javascript requirement. However, no
Javascript will run without this phrase. Thisis part of our template code.

Programs must end with “</script>"

Like the statement above, thisisan HTML requirement, not a Javascript one. This, too,
is part of our template code.

Javascript is case sensitive

Do you remember when we wrote to our web page with the “writeln” method from the
document object? Since Javascript is case sengtive, “WriteLn” does not work. Note that
this does not apply to HTML phrases — the previous two rules included.

Javascript allows comments

Comments are sections of code that you' ve added to your program to makeit easier to
read and understand. For more information, see the “comments’ section of

“programming concepts.”

Javascript ignores whitespace

Javascript ignores dl spaces, tabs, and new linesin your program unless they interrupt a
gatement. Hereisan example of both avaid and invalid use of whitespace.

A4 Walid

document i writeln("¥fou rolled a ™
+ randomMumber) ;

Ff Inwalid

docu ment.writ eln("¥ou rolled
a " + randomflumber) ;

Javascript programs are lists of statements separated by semicolons

We will go over these shortly, but we can bresk statements into one of severa categories.
- code blocks (a group of statements between *{‘ and '}’ symbolsthat Javascript
treats as one statement)

Page 13 of 36

- variable definitions (tell Javascript to put aside enough storage to remember some
information for you)

- vaiable assgnment (tdl Javascript to actualy put information in storage)

- method/ function calls (tell Javascript to “do something” — ie write ‘Hello
World' to the web page.)

- program logic/ flow control (execute some statementsif a condition istrue)

- loops (execute the same set of statements more than once)

Our next program, a Javascript dice roller, shows some of these statementsin action.

Description of “Dice”

Let’'sgo over amore complex Javascript program to illustirate some of Javascript’ s rules
of syntax.

1 <!DOCTYPE htwl PUBLIC "-//W3C//DTD HTML 3.2//EN">

2 <HTHLZ>

3 <HEAT:=

4 <TITLE>

5 Dice rolling program

= </TITLE>

7 < JHEAD

! <BODY-

q <LACRIPT language="jawvascript™ type="text/javascript”>
10 A4 How many faces does the die haver?

11 war DICEFACES = 6;

El A4 Remember our random mmber

13 wvar randomfumber = 0;

14

15 A4 Tell Javascript that we'll be using functions from the "Math™ obhject.
1E with(Math)

17 {

12 A¢ Roll the dice

13 randowfumber = floor | (randow() * (DICEFACES - 1)1) + 1:
20 H

21

73 £¢ Tell the user what they rolled.

73 document.writeln("You rolled a ™ + randombhumber) ;
24 < fACRIFT=

a5 < /BODY>

26 < /HTHL>

Do you notice any Smilaritiesto “Hello World"? Of coursel Template code saves us
quite a bit of typing. Asde from the page stitle (line 5,) our custom code runs only
between lines 10 and 23. Even at that, most of the code is whitespace and comments!

To run thisdice program, first copy the template code from *helloworld.html” and paste
it into anew file. Next, type the custom code (without the line numbers) into your text

Page 14 of 36

editor. Again, don't forget to save your work every few minutes. When you save your
program, put it into your working directory, under a“dice’ subdirectory. Cdl it
“dicehtml”

Next, use Windows Explorer to browse to your file. Once you' ve found your program,
double-click it. 'Y ou should see aweb page gppear with the title “Dice rolling program”
and the page content “You rolled & followed by a number between 1 and 6.

'a Dice rolling program - Microso
] File Edit _Eiew Favorites]
] 4= Back -~ =p v'@ @ ﬁ'|
| Googe-]

Yourcledal

Lines 10, 12, 15, 18, and 22: Thefirg thing you might notice about the program isthe
green sectionsthat |' ve written in proper English. These are cdled comments.
Comments describe sections of code to other programmers (or ourselves) that aren’t
particularly intuitive. Whenever the Javascript interpreter reads two forward dashes, it
ignores them and anything to the right of them on that line. Alternatively, you can place
your comments between the dash-star combinations, “/*” and “*/”. This second type of
comment can span multiple lines if you want. Comments should not restate the obvious.
After dl, the comment “ define some variables’ doeslittle to enhance your program’s
readability.

Lines 11, 13: Theword var tells Javascript that we want it to remember a bit of
information. We cdl thisbit of informetion avariable. Noticethat we didn’t tell
Javascript what type of variable we want (a number, or some money, for example)) This
means that Javascript is aweakly typed language. Strongly typed languages require that
you tdl the computer exactly what kind of information you want to sore.

Also notice that these statements end with a semicolon. Except for comments,
conditional, and looping statements, you should end every Javascript statement with a
semicolon. See the section, “Programming Concepts’ for clarifications on this.

Asaprogramming convention, variablesin ALL UPPERCASE are cdled constants
Congtants help make our code both easy to read and easy to maintain. Code without
condantsis sad to use “magic numbers” Although they mean the same thing to
Javascript, would you rather read the equation “2 x Pl X R” or “2 x 3.14159265359 x R”?
Also, if we use this number throughout our program, we can change aconstant’s

definition much easer than we can change every place that we use its value,

Page 15 of 36

Line 16: The statement with(...) tells Javascript that we're lazy. WEe re saying that there

are certain methods (random(), and floor() in this example) that belong to a certain object
(Math). However, we don’'t want to type “Math.random()” so just let us type random().

Note that this laziness applies only to statementsingde the curly braces ({ and }).

Line 19: Thisline packs quite apunch! Let's bresk it down even further.

randonfumber = £loor|

I
random() * (DICEFACES - 1)

]
I+ 1:

Although it looks complex, thisline redly bregksinto afew method cdls and alittle bit
of meth.

1) randomNumber = Thisiscdled avariable assignment. Do you remember
when we used the var word to ask Javascript to store our bit of information? Now
we're tdling Javascript that we' d like the randomNumber variable to store the
resultsof ...

2) floor(...): The outer wrapper of most of thisline isthe floor () method.

Remember, we' re ingde a“with(Math)” block, so we' re actudly cdling the
Math.floor() method. Math's floor() method takes a number as a parameter and
returns the floor of that number asaresult. If you are unfamiliar with the term,
flooring a postive number essentialy rounds it down. The parameter that we're
passing toflooris...

3) random() * (DICEFACES-1): Agan, werein the “with(Math)” block, so
random() is amethod from the Math object. According to Chaper 4 of Netscape's
Javascript Reference, Math.random() returns a decimal number between 0 and 1.
So how do we convert this to arandom number between 1 and 6? Easy! Fird,
find out a number between 0 and 5. We can do this by multiplying the return of
random() by 5. The DICEFACES congtant, as defined earlier, does quite a bit to
make our code more readable. Note that the Javascript term for multiply is“*”

4) + 1. Findly, weadd 1 to theresult of thefloor. This converts anumber between
0 and 5 to anumber between 1 and 6.

x5

Page 16 of 36

A common migtake in thislagt bit of code would have been to multiply the random
number by the number of faces on your die. Unfortunatdly, thiswould give you adice
roll between 0 and 6!

Line 23: We ve dready seen the document.writeln() method in action. Unlike the
previous usage, this line seems to mix addition with sentences (called sringsin
Javascript.) Fortunately, Javascript offers avery useful feature called string
concatenation. That is, Javascript makes anew string out of two smaler stringsif you
Sseparate them with a“+”. In this case, the writeln() method thinks we're passing it the
sgngledring “Yourolled a5’ if in fact we did.

Questions

At this point you're probably asking the question, “How did you know what methods to
use?’ or more likdy, “How did you know how to make that program?’ That'sa
completely vaid question. It dl comes down to how well you know your tool box.

Take, for example, an gpprentice carpenter who has just been introduced to his or her first
tool: ahammer. They can nail boards together with abandon but lack the skillsto make a
house. Luckily, apprentice carpenters have master carpenters to introduce them to the
proper tools of their profession: the band saw, nail gun (wow! There's amore efficient
way?), and many more.

Ealy programmers find themsdvesin aamilar Stuation. Y ou know how to print to the
screen, but soon tire of writing “Hello World” programs. That's where your trusty
reference materia savesyou. | mentioned earlier that you're wasting your time if you
memorize every method of every class. However, you should glance over your toolbox
at least once s0 you know what's available to you. | recommend that you skim chapters 2
through 7 of Netscape' s Javascript reference or the description column of the Coolnerds
cross-reference to see what Javascript offers.

Programming Concepts

Although you might be aware of the tools that your language provides, | ill haven't
introduced you to the statements that control thosetools. After al, we still need waysto
express common concepts like repetition (“hammer that wal until lunch”) and
conditionds (“if you're tired then hammer dower.”)

Although they differ dightly in their implementation, amost every recent programming
language supports the following concepts: variables, if / else, switch, for, comments,
functions, return, while, break, continue, do ... while, and operators. Again, quickly
glance over the Netscape Javascript reference (chapter 3) to familiarize yourself with
additiond features.

Page 17 of 36

Variables

Computers use variables to store information for us. In generd, you cregte one of five
types of varidbles: integers, floats strings, booleans, and arrays. As| mentioned earlier,
Javascript isaweskly typed language. Because of this, you do not have to tell Javascript
what type of variable you want to sore— smply usethe ‘var’ statement. Try to name
your variables descriptively. For example, use the variable name “ menuSd ection”

ingteed of the cryptic “m.” All languages have rules about whét |etters you can usein
variable names, and how long your variable names can be. For the specifics, see one of
your handy references.

Integers / Floats

The difference between an integer and afloat (“floating point number”) isthat floats dso
gore decimd places. 1t sounds smple, but the computer makes avery clear distinction.
Most programming languages bresk the distinction even further by letting you say how

big of a number you want to store. With these additiond digtinctions, you'll often see the
terms“byte,” “short,” “int,” and “long” describe integers. Likewise, you'll often see the
term “redl,” “float,” and “double’ describe floating point numbers.

Javascript examples:

var myldge = Z3;
wvar PI = 3.14159;

Strings

Strings store sequences of |etters, numbers, and possibly other characters. 'Y ou normaly
surround stringswith single () or double (*) quote characters. Examplesincude “Hello
world”,“ 111 1 117, and words that the multi-language “ Unicode” convention
supports. Some languages define strings as “char[]” or “char*”, semming from the way
that C and C++ store strings as arrays (lists) of characters.

Javascript examples:

var wyFirstitring = "Hello World.™:
war statusline = ".---=== Presz a Key ===---_."";

Booleans

Boolean variables are those that represent “true” or “falsg” vaues. Many languages do
not directly support boolean variables, but instead use some sort of mapping. For
example, “1" might represent “true‘ and “0” might represent “false” Javascript usesthe
empty sring (“”) and the vaue “fdse’ to represent false values. Everything ese works
out as“true.”

Page 18 of 36

Javascript examples:

S8 True walues

war trueval = True;

war truev¥alZ = "true”;

war trueVali = "Hello World.™:

A4 False walues

war falseWVal = false;

wvar falseVali = "false™; ([(Hah' Just Jjoking. Any hon-empty string means true)
war realFalseVal3 = "';

Arrays

Arrays hold lists of variablesto give you a convenient way to accessthem. Rather than
create 100 “phone number” variables, you can create a sngle “phone number” array to
hold 100 numbers. Usudly, dl of the variables must be of the same type (number, string,
etc) Mogt languagesusethe‘[* and ‘]’ symbolsto define an array, and nearly every
language uses those symbols to access the dements of an array. Javascript lets you mix
the types of varidblesin an array.

Onetricky point about arrays in most languages is that they start from zero, not one.
They are “zero-based.” This means that you accessthefirst ement of myArray with

“myArray[Q]”.

Javascript examples:

AF Create an array, then populate it.
var myArray = new Arrayi(l00):
wyhtrray[0] = "First entry.™:
wyhrray[l] = "Second entry.":

/4 Create an array and populate it at the same time.
var WyArraye = new Array("First entry”, "Jecond entrv.™):

AF Write out zome array information
docunent.writelnimydrray[0] + ", ™ + wylhrray2[0]):

If / Else

“If-Else satements’ give us the power to make our program “branch.” They let our
program behave differently depending on the results of atest. This“ted” issmply a
boolean value: true or false.

“If-Else satements’ are called conditional statements. They operate differently in
different conditions. Likedl other conditiond statements, you can follow them with

Page 19 of 36

ether asingle satement or block of code. Conditiona statements should not have a
semicolon at the end of the line, although the code directly undernesth should.

If-else ladder

We can gtring together “if (...) dseif (...) ... dseif (...) dse(...)” satementsto create
what isknown as an “if-else ladder.” With this structure, our program executes only the
first statement (or block of code) that passesits boolean test. We usudly usethefina
“elsg’ datement asa“ catch-al” to execute when none of the above tests pass. Of course,
anything past thefirgt “if” statement is optiond. The code below shows an example if-
elseladder.

Code blocks

We surround statements with the symbols, ‘{* and ‘}’ to tell our language that those
statements are a block of code. Blocks of code cause our programnming language to trest
them as one statement. Rather than have a conditiond statement execute only one line of
your program, code blocks et you execute many.

Although the statements inside the block of code need semicolons at the end of theline,
the block itself does not.

Javascript example:

var iAmAGreatProgrammer = True}
wvar allProgrammersbhreGreat = false;

if fallProgrammersireGreat)

document.writeln("All programnmers ake great.™);
else 1f(! iAwaGreatProgrammer)

docupent.writeln(”I am not a great programmer’™):
else
{

docunent.writeln("I'n a great programmer!’™):

A4 Great programmer's aren't conceited
ihmiGreatProgranmer = false;

Case

Case saementswork very much like an if-dseladder. They amplify the very common
task of performing different operations based on one of many possible vaues of a
vaiable. For example, you might use a case statement to process a user’ s menu
selection. Most languages restrict this comparison to numeric variables, but Javascript
does not.

Page 20 of 36

We credte a case statement in three parts: the switch (the variable being tested), case
statements (operations based on a possible values of that variable), and perhaps a default
statement (the catch-dl clause)

The switch

The switch statement tests the variable that you write againgt each of the following case
statements.

The case statement

“Case satements’ tdl the computer “In the case that my variableis(...), then execute
this satement.” Like other conditiona statements, you can aways replace “this
gatement” with ablock of code containing many statements.

Tricky point: You mug finish your satemert (or block of code) with a*bregk;” statement
if you want to exit from the entire case satement. Otherwise, Javascript continues to
process (without testing) the rest of the commands. Thisis an obscure festure known asa
“fdl-through.”

The default

Asyou might have guessed, Javascript cdls your default case when none of the other
case satements maich. Y ou can leave out this case if you want Javascript to take no
actiona dl.

Javascript example:

var lAmAGreatProgrammer = TCrue;
war allProgrammersbhreGreat = false;

switch{idmdGreatProgrammer)

{
case TCrue:
{
document.writeln("I am a) ;

document.writeln (™ Jgreat programmer .}
} break:
case false: document.writeln("] am not a great programmer ."); break:

default: document.writeln("I don't know™);

Page 21 of 36

For / break / continue

Like switch statements, “for-loops’ use atest to help control the flow of your program.
Unlike switch statements, though, they execute the same statement (or block of code)
until thetest isfalse.

We can break afor-loop into three parts: the initializer, conditional, and iterator. We
separate each part with a semicolon.

The initializer

Programming languages call the initidizer of your for-loop just as they starts to process
thefor-loop If you write afor-loop to run a specific number of times (known asa
counted for-loop), you normaly use the intiaizer to declare avariable and set its value to
0. For example, “for (var counter = O; counter < 10; counter++).”

The conditional

Programming languages continue to execute the stlatement (or block of code) beneath
your for-loop aslong as the conditiona evauatesto true. For example, “for (var counter
= 0; counter < 10; counter++).”

The iterator

Programming languages execute the iterator of afor-loop after they execute the statement
or block of code. If you write a counted for-loop, you'll usudly use this space to
increment the variable you're counting with. For example, “for (var counter = O; counter
< 10; counter ++).”

Javascript example:

F4 Thiz code prints "Counting 0" through "Counting 97
for(wvar counter = 0; counter < 10; counter-++)

{

docunent.writeln("Counting: ™ + counter + "<BR:"):
}

Asde from what |ooping statements areedy offer, we have two more statements to help
control alooping Satement. These are continue and break.

Continue

The continue statement tells our programming language to stop processing our block of
code. Ingtead, the programming language starts the next iteration of the loop. When it
garts the next loop, it executes the iterator then re-evauates the conditional.

Page 22 of 36

Break

Break statements break out of aloop or block of code. When your programming
language encounters a break statement, it smply jumpsto the end of your block of code
and continues processing.

Javascript example:

S4 Thizs code prints "Counting 0" through "Counting 57
for(wvar counter = 0; counter < 10; counter++)

{
document.writeln("Counting: ™ + counter + "<BF>");

AS Break out of the loop if we're at &
if (counter == 3]
break;

A Jump to the next iteration of the loop
continue;

S Thiz will never get executed
document. writeln ("I won't get executed.™):

Comments

As| mentioned earlier, comments are sections of code that you add to your program to
make it easier to read and understand. Most languages support two types of comments:
line comments and block comments. As with other languages, Javascript ignores the
comment characters and al text until the end of the comment.

In Javascript, line comments dart with a“//” and end at the right-hand edge of the page.
Because they end at the end of the page, they work only for oneline. Some other
languages use the hash (#) symbal to gart aline comment.

In Javascript, block comments start with a“/*” and end with a“*/”. Unlikeline
comments, they may span severd lines.

Asde from that smple summary, the most important thing to say about commentsit to
use them. They may seem to be anuisance a first, but they help focus your mind and
describe the “high-leve” flow of your program.

Functions / return

WEe ve seen and used functions aready, but not formally. When we discussed them
earlier, we caled them “methods.” Functions let us create (and name) ablock of code to
perform some logica task. Rather than write the code to generate a random number each

Page 23 of 36

time we want to, we can smply cal Javascript’s Math.random() function. This function
contains al the code we need to get a random number.

A function is made of four parts. name, parameters, body, and return value.

Name

A function’s name is the short-form that we use to refer to the function’s block of code.
Always try to name your function to properly describe its purpose. Function names like
“dolt()” or “procesy))” do little to improve your program’s readability. Like variable
names, al languages have rules about whet |etters you can use in function names and
how long your function names can be. For the specifics, see one of your references.

Parameters

Most functions work with one or moreinput parameters. For example, the Javascript
document.writeln(...) function writesits string parameter to the web page. We place
parameters between brackets immediately after the function name. Of course, your
function may take no parameters. In this case, you put nothing in between the brackets.
Most languages require that you tell them the types of the parameters, but Javascript does
not.

Body

The body of your function defines the code that you want this function to execute. You
may use any of theinput parameters during your code. An important point to note,
however, isthat you cannot generdly modify these input parameters. If you do, the
change remainslocd to your function only — and will not remain once your function
exits.

Return value

Mog functions of any usefulness return some sort of result. For example, the Javascript
Math.ceil(...) method essentidly returns a rounded-up verson of itsinput. The
Javascript Math.random() method returns a random number between O and 1. Strongly-
typed languages require that you tell them what type of variable your function returns,

but Javascript does not.

Javascript example:

Page 24 of 36

/4 Calculate the area of a rectangle
function calculatedrea(length, width)

{
war area = length * width:
return area;

}

A4 The length and width of our rectangle
war LENGTH = 10;
war WIDTH = 11:;

A/ Write out the area of the rectangle
document.writeln ("4 rectangle with length ™ + LENGTH +
" oand width " + WIDTH + ™ has area: " + calculatedrea|(LENGTH, WIDTH)) :

While /do ... while

Thewhile and do ... while loops are minor variations of for loops.

While-loops execute their block of code aslong as their test holds true. Use awhile loop
when you have no need for the initializer or iterator portions of afor-loop. While-loops
do not execute their block of code (even thefirst time) if the test holds false.

Javascript example:

document.writeln("We are preparing your report. Please wait.™):
while (preparingReporti)]
{

document.writeln(™.";

updateNunber0fWaits() ;

Do-while loops dightly twist the while-loop concept in that they guarantee that the code
block will run at least once. Use thistype of loop when you want to continuoudy test the
results of an operation that happensinsde your block of code. Note that unlike the other
while-statements, this one must end with a semicolon!

Page 25 of 36

A4 Prepare to store a random number
war mnyRatdomn:

A4 Generate random numbers until we get one greater than
A4 (or equal to) 0.5

J¢4 Hote that we need this block to eXecute at least once!
da

{
mwyRandom = Math. randomi) :
document. writeln("Fandon number: " + wmyRandom + "
"):

H
while (myFandow < 0.5 ;

Operators

Operations are the smplest operations in a programming language. They are dso the
most essential.

Typica operations include comparisons (ie: <, >, ==,) arithmetic (ie +, -, /, *, %,) and
logic (ie !, &&, ||.) Any good programming reference for alanguage lists and explains

al of itsoperators. It should dso ligt their relative precedence. In programming terms,
rules of precedence tell a programming language the order to evauate alist of operators
in the same statement. Like the old mathematical precedence rule (BEDMAS — brackets,
exponents, divison, multiplication, addition, and subtraction,) programming languages
follow smilar conventions,

As an important note, language designers define operator precedence rules smply
because alanguage cannot survive without them. In practical terms, good programmers
always use brackets to identify their desired order of operations. They do this even when
their desired order of operations match the language' s precedence rules. We have better
things to do in life than memorize (or expect other to memorize) long lists of precedence
rules.

var myMath = (3 * 4) + 5;

A Large Example: Shuffling Cards

To finish thisintroduction to computer programming, let’s review arather large piece of
Javascript that shuffles and displays adeck of cards. I’ ve written this program primearily
to illugtrate the concepts that we just covered. However, this“tutorid code’ is by no-
means the best code: I'll point out items that | would have written differently if it were
not atutorid.

Page 26 of 36

I’ll dso mention some programming points that have nothing to do with syntax. These
will help you with programming in generd, not Smply programming in Javascript.

1
12
13
14
15
16
17
18
13
20
21
22
23
24
25
26
27
28
29
30
A
32
33
34
35
36
aF
38
39
40
41
42
43
44
45
46
47

Page 27 of 36

A4 Constants for our deck

war ACE = 0, J&CE = 10, QUEEN = 11, EING = 1&Z;

war HNUMEEROFAUITS 4;
war CARDIFERAUIT = 13;

war CARDCOUNT = (NUMBEEOF3IUITS * CARDIPERIUIT) :

A4 Homw many times do we want to shuffle?

war SHUFFLECOUNT = 1000:

J4 The namez of the suits
war HEARTS = 0, SPADES = 1;

DIAMONDE = Z; CLUEBS = 3;

wvar suits = new Array(“Hearts™, "3Spades”™, "DiamondsT, "Clubsz"):

S# Store all the cards

war deck = new Array (CARDCOUNT) :

A4 4dd cards to the deck
function addCards()

{

S/ Go through all the suits (slow changing loop)
for (wvar suitMumber = 0; suithumber = 4; suithhamber++)

{
A4 Go through all the

cards (fast changing loop)

for(wvar cardiumber = 0; cardiMumber < 13; cardNumber4+)

{

F4 Conwert the combination of "suitHumber™ and "cardihumber™
F4 to a nmumber between 0 and 51.
wvar arraylndex = [(suithhumber ¥ CARDIPERIUIT) + cardiiumber:

S The name of the
war returhitring =

S Check 4f delsig
1f ([(suithumber ==
[[suitNumber ==
[[suitNumber ==
returnitring +=

card

rer o,
-

one-eyed card

DIAMONDS) & (cardiumber == EING)) ||
HEARTS) e (cardiumber == JACK))] ||
SPADES) e [(cardMumber == JACK))]

" oLix0ne-eyeds/is "

43

49 A4 Uze the slang terms for zome of the card numbers.
30 A4 Remember that computers count from 0... S0 card number
51 4 0 15 the lst card!

R switch (cardiunber)

53 {

B4 case 4CE: returnitring += “Ace™; break:

BE case JACK: returnitring += "Jack™; break:

BE caze QUEEN: returnitring += "(ueen”: hreak:;

57 caze EING: returnitring += "King"”; break:

5o default: returnitring += [(cardMumber + 1); break;
53 H

B0

Bl S4 Also tell them the pretty name for their suit

g2 returnitring += " of " + suits[suitMunber];

E3

£4 A4 4dd the card name to the deck

= deck[arrayIndex] = returnitring:

EE }

EY }

B2 H

E9

70 S et a random mumber hetween 1 and "highWVal™

1 function getRandombumber (highVal)

7 {

73 war randowmfumber = Math. floor (Math. random() * (high¥al - 1)) + 1:
74 return randonfhumber ;

75 H

7B

77 A Ghuffle cwo cards

78 function shuffleTwolCards()

79 i

a0 A4 Pick the 2 cards to shmffle

a1 war firstIndex = getRandomMumber (CARDCOUNT) - 1:

az war secondIndex = getRandonfumber (CARDCOUNT) - 1:

a3

Page 28 of 36

o4 A Technimque (AFL Algorithm):

o5 44 1) Take first card and put it in a temporary location
o5 Af 2) Take the second card and put it where the first card was
o7 F#43) Take the card from the temporary location (the first card)
et iy and put it in the second location

29 var swaplLard = deck[firstIndex]:

aq deck[firzstIndex] = deck[secondIndex]:

o deck[secondIndex] = zwaplCard:

92 }

a3

94 A Gmffle the deck of cards 'howMuch' times

o5 function shuffle (howluch)

95 {

g7 A4 Tze the 'shuffleTwoCards' function 'howMuch' times
go war counter = 0O;

g9 while|true)

100 {

101 counter++;

102 if(counter == howMuch)

102 break;

104

105 shmffleTwoCards() ;

106 }

107 }

108

109 A¢ add the cards to the deck, then

110 A¢ stmffle the deck FHUFFLECOTUNT times

111 addCards()

112 shmffle (SHIFFLECOUNT) ;

113

114 S Draw 52 cards with a while loop

115 var counter = 0;

116 while [counter < CARDCOTNT)

117 {

112 docunent. writelnideck[counter] + "<BRE:="):

113 counter+t;

120 3

Code Summary

We can break this card-shuffling program into three parts. adding cards to the deck,
shuffling the cards, then findly displaying the cards. Asyou'll soon see, it’sno surprise
that I’ ve written functions to handle the first two operations. These functions parcel large
amounts of code into easly understandable operations.

Page 29 of 36

Using functions properly

Thisis one tenet of good computer programming. Like any other endeavour, you need to
learn how to delegate responghbility.

If you want to write a program to shuffle cards and display them, you might at first fed
overwhelmed by the size of the task. Being one of keen management whit, you can
delegate your responsibility. Maybe you'll get one friend to write the part that creates the
deck of cards. Y ou might aso get another friend to write the part that shuffles the cards.
Whileyou're a it, you might aswell get ancther friend to write the part that displays the
cards.

If your friend asked you to write a bit of code to create a deck of cards, you could just
run off and gtart coding. After dl, it's aout a Sngle page of programming.

If your friend asked you to write a bit of code to display a shuffled a deck of cards, you
could just run off and gart coding. After dl, it's much less than asingle page of
programming.

If your friend asked you to write a bit of code to shuffle adeck of cards, you might at first
fed overwhemed by the Sze of thetask. After dl, how do you shuffle an entire deck of
cards? Being one of keen management whit, you could delegate your responsgibility.
Maybe you'd get afriend to write a part that switches two (random) cards and just use
that part many times.

If your friend asked you to write a bit of code to switch two cards in a deck, you could
just run off and gtart coding. After dl, it's much less than a single page of programming.

Do you see any patternsin thislogic? Of course! If a programming task contains more
than one about one page of logic, you' re probably trying to say too much a once. At that
point, you should break your task into severa independent sub-tasks. Of course, if your
friends don’t want to write the bits of code, you can dways do it.

How doesthishelp you in thelong run? It helpsin two respects: maintenance, and
readability.

Maintenance

Let’s say you' ve written your card-shuffle and display program, but want to twesek it.
Perhaps you want to change the shuffling dgorithm to comply with the “Las Vegas
Internationd Committee for Card Shuffling” guiddines. If you've written your program
poorly, you might wade through pages of code before you find the part that shuffles your
cards. Infact, Snce you woveit so intricately with the rest of your code, you aso worry
that you' Il bresk the “add cards’ bit, or the “display cards’ hit.

However, if you' ve write your code properly, you can search for the “shuffle’ function
and restrict your changes to that function aone.

Page 30 of 36

Readability

Reading (and understanding) a well-written computer program is much like reading a
book. When you want avery high-level view of abook, you smply read thefirst level of
the table of contents. For example, a quick scan of this document’ s table of contents tells
you that we're learning about “The Tools You'll Need,” “Your First Program,” and so

on. Likewise, we know that our Card Shuffling program executes the functions
“addCardy(),” “shuffl&()”, then displays the cards.

After this glance a our book, we might want to learn more about “The Tools You'll
Need.” By scanning the table of contents one level deeper, we can seethat we' Il need “A
Text Editor,” “A Web Browser,” and afew moreitems. Likewise, we know that our
“shuffle()” function in the Card Shuffling program executes the function
“shuffleTwoCardy()” many times. Without reading any code thet actualy does anything,
we dready have agood idea of what our program does.

We can continue to break the structure of abook or computer program into finer details
until we finaly arrive at sentences or lines of code.

Program variables
Lines 12-25 create severa variables for our program to use.

Congtants

Lines 12-21 define congtants for our program to use. By glancing through the code, it is
easy to see how our congtants improve the program’ s readability. One sticky point is that
the congtants on line 12 define some of the specia cards with a zero-based index. That
is, the first card (ACE) would be card #0 in alist. Likewise, the 12" card (QUEEN)
would be card #11 in aligt.

/4 The names of the suits
wvar HEARTS = 0, SPADES = 1; DIAMONDS = Z; CLUBS = 3;
var suits = new Array(“Hearts™, "3padez”, "Diamonds™, "Clubszs"):

A/ Store all the cards
var deck = new Array(CARDCOUNT) »

Working variables

Lines 22- 25 create variables that we actively work with throughout our program. Notice
that we create two arrays. one that we populate immediately, and one that we populate
soon after.

Lines 21 and 22 give us a convenient way to find out the name of a suit from its suit
number. We arbitrarily define the suit numbers on line 21. Computer programmers call
this alook-up table snce you look up the name of a suit once you know its number. As
you will soon see, the expression “sUitd HEARTS]” is much eader to read than alarge
case statement to return a suit name from a suit number.

Page 31 of 36

Function addCards()

Asits comments describe, lines 27-68 define a function that adds cards to our program’s
deck. Thisisthe deck that we defined in line 25.

Nested for-loops

At the highest leve, this function loops through each of the 4 suits. Nested in this* outer
loop” isan “inner loop” that goes through each of the 13 cards of that suit. Asthe
comments mention, the outer loop runs much dower than the inner loop — because the
inner loop happens 13 times for each time that the outer loop gets executed. Notice your
added bonus of bad code: the comparison in each loop uses amagic number! We should
replace the numbers ‘4’ and ‘13’ in the loops with the NUMBEROFSUITS and
CARDSPERSUIT constants to make this code easier to understand.

A4 Go through all the suits (slow changing loop)
for(war suithumber = 0; suitlhumber < 4; suitlumber++)

{
A7 Go through all the cards (fast changing loop)

for(var cardiumber = 0; cardiumber = 13; cardiumber++)
{

Flattened arrays
The next part of our function, line 38, uses a technique called flattened array indexing.
Even the term is complicated, so let’s explain the concept.

Pretend you have afriend who livesin a 5-story apartment building. Each story has 6
goartments. If the landlord wants to give an gpartment number to each unit — with no
gaps or doubles, he or she might use the following system:
1) Number the gpartments on the bottom floor (floor number O in computer
peak) from 0 to 5.
2) Number the gpartments on the next floor (floor number 1 in computer speek)
from6to 11
3) ...

In fact, he or she might make their life alittle eesier with alittle math. To find out the
gpatment number of any unit on any floor, Imply:

1) Count the number of unitsin the floors below. To work this out, multiply the
number of floors below the unit b}f the number of units per floor. Notice that
the number of floors below the 4™ floor (3) is the same as the 0-based number
of the 4™ floor (3).

2) Add the unit's hallway-position to that number. le: add O for the 0" unit, and
4 for the 5" unit.

So the third unit on the 4" floor would be:
= (3* UNITSPERFLOOR) + 2
=(38*6)+2
= #20.

Page 32 of 36

How does this apply to cards? Well, rather than use their proper names, we can number
the suits of our deck between 0 and 3. Next, we can number the cards of each suit
between 0 and 12. Now that we know the 0-based index of the suit (floor) and 0-based
index of the card (halway-position,) we can give each card a unique number between 0
and 51. Thisfitsvery nicdy into asngle 52-dement array with the formular (*suit
number” * “cards per suit”) + “card number”.

S/ Conwert the combination of "suitMumber™ and "cardiiumber™
S/ to a mummber between 0 and 51,
wvar arraylndex = (suitlumber * CARDSPERSUIT) + cardiumber:

Why do we do it thisway? The reason isthat alittle complexity now savesusalot of
complexity later. Firdt, we can print asingle list of 52 cards easier than 4 lists of 13
cards. After dl, the*4 suits of 13" concept relates very little to a shuffled deck of cards.
Second, we can shuffleasingle list of 52 cards much easier than 4 listsof 13 cards. We
can switch two entries of a single array much easier than we can switch two entries out of
four arrays.

So given the suit number (outer loop) and card number (inner [oop), line 38 computes the
index into the array that has room for 52 cards.

String preparation
Lines 40-41 prepare a variable to eventudly hold a string like “One-eyed Jack of Hearts.”
At this point, the gtring is empty.

Conditional Logic
Lines 43-47 check if the card is aone-eyed card or not. It isavery typicd example of
conditiond statementsinsde an if-statement.

F#4 Check if it'zs a one-eyed card

if ([(suitlumber == DIAMONDS) & (cardiumber == EING)) ||
[[suitMumber == HEART3) && [(cardMumber == JACK)) ||
[[suitMumber == 3PADEZ) && [(cardMumber == JACK])]
returnString += " <ix0ne-eved<fi= ";

When we convert this satement into English, we read it something like: “If the card isa
‘King of Diamonds OR *Jack of Hearts OR *Jack of Spades then add “ One-eyed” to
the string we're preparing. Notice the HTML code <i> and </i> that puts our wordsin
italics.

Case statement

Lines49-59illudrate atypica case-statement. Init, we map the named card-numbers
(Ace, Jack, Queen, King) as defined earlier into their English equivdents. If thereisa
match, we add this dang name to the string we' re preparing. Otherwise, we smply add
the card number (plusone! Don't forget that our zero-based card number 1isredly the
second card.)

Page 33 of 36

Suit name
As| mentioned earlier, lines 64-65 use alookup-table to convert a suit number to a
proper name.

Add thecard

S4 add the card name to the deck
deck[arrayIndex] = return3tring:

To complete this function, we place the full name of the card (ie: “2 of Hearts’) into the
part of the deck that we computed earlier.

Function getRandomNumber()

Lines 70-75 define a function to return arandom number between 1 and the parameter
you pass to the function. I've smply wrapped our dice-ralling random number generator
neatly into afunction.

Function shuffleTwoCards()

Lines 77-92 describe a function that swaps two cards in our deck. The temporary-vaue
technique that this function usesis the most common (and efficient) way to swap two
variables. Note that our program chooses the firstindex and secondindex with the random
number function that we wrote.

var gwaplLard = deck[firstIndex]:
deck[firstIndex] = deck[secondIndex]:
deck[secondIndex] = swapCard:

Function shuffle()

Lines 94-107 shuffle the deck. Asyou might notice, it does nothing more than
shuffleTwoCards() many times. Thisis a perfect example of good functiona
programming.

Y ou might notice that this function uses awhile loop and bresk statement to control a
counted loop. If it weren't for tutoria purposes, | should have written this as the for
loop:

for (var counter = 0; counter < howlMuch:; counter++)
shuffleTwoCards() ;

The remainder

Lines 109-120 actudly make the high-level structure of our program. Firdt, lines 111 and
112 delegate the responghility of creating and shuffling the deck. Findly, we cycle

Page 34 of 36

through the deck and print each card name on itsown line. The“
" isour way to
tell Javascript to start anew line. Again, notice the while loop that we' ve cobbled
together to smulate afor-loop. Asyou may guess, | should have written this as afor-
loop.

The results

; Card Shuffler - Microsoft Inter

] File Edit Wew Favorites To
Jl—Bar.kv-P - 3[4 a3
| Googe-|

9 of Clubs

8 of Diamonds

8 of Hearts

Ace of Clubs

Cheen of Spades

9 of Hearts

Arce of Bpades
Cme-aved King of Diamonds
(me-gved Jack of Hearts
2 of Hearts

I of Dhamonds

8 of Spades

Chueen of Clubs

Eing of Spades

7 of Hearts

2 of Clubs

Your Programming Future

As | mentioned near the beginning of this piece, I’ ve amed to introduce you to computer
programming — not teach you its entirety. Do not let this statement dissuade you, though.
The trait that unites dl good computer programmersisther programming skill. You'll
need to learn new syntax rules as you move between programming languages, but the
core programming principlesrarely change. Infact, you can pick up any programming
language with the fundamentas that this tutorid has taught you.

If you decide to pursue computer programming, you' |l need to decide on alanguage and
learn it well. Once you think you' ve learned alanguage, you'll have to practice it well.
Start with awdl-written book that has agood index. There are many propellerheads that
have written 1000 page programming books. Ignore that unfortunate magjority and look

Page 35 of 36

first for abook that reads well. Next, come up with some sample questions (“What are
the parameters to the document.writeln() method?’) and see how quickly you can locate
their answers. Once you' ve learned alanguage or two, you'll find that you can easily use
internet searches and tutorias to teach yoursalf a new language.

Javastript is an excellent language to add functiondity to your website. In fact,
Javascript isamajor component of a new trend in web-development caled Dynamic
HTML, or DHTML for short. Asde from web development, though, Javascript offers

very little power.

To create more powerful programs for your web site, ask your hosting company (ie:
school adminigtrator, internet service provider) if they support the “Perl,” “PHP,” or
“Python” languages. Any of these are powerful enough to support dmost any gpplication
you might write. However, they areinterpreted scripting languages and carry with them
the burden of that title.

To create programs thet are fast, powerful, and easy to digtribute, | would highly
recommend that you explore compiled languages like Java, C#, or C++. These languages
offer tremendous amounts of pre-written code in standard libraries, software devel opment
kits (SDKs,) and application programming interfaces (APIs) Nearly every professond
software devel oper has this type of language as his or her “native tongue.”

Whatever language you choose, though, make sure that you use its object- oriented
capabilitiesto the fullest. Object-oriented programming has literdly transformed the
software development industry — and for good reason.

| wish you luck and perseverance.

Page 36 of 36

